
Supporting Customized Views for Enforcing
Access Control Constraints in Real-time

Collaborative Web Applications

Patrick Gaubatz1, Waldemar Hummer2, Uwe Zdun1 and Mark Strembeck3

1Faculty of Computer Science, University of Vienna, Austria
{firstname.lastname}@univie.ac.at

2Distributed Systems Group, Vienna University of Technology, Austria
{lastname}@infosys.tuwien.ac.at

3Institute for Information Systems, WU Vienna, Austria
{firstname.lastname}@wu.ac.at

Abstract Real-time collaborative Web applications allow multiple users
to concurrently work on a shared document. In addition to popular use
cases, such as collaborative text editing, they can also be used for form-
based business applications that often require forms to be filled out by
different stakeholders. In this context, different users typically need to
fill in different parts of a form. Role-based access control and entailment
constraints provide means for defining such restrictions. Major challenges
in the context of integrating collaborative Web applications with access
control restrictions are how to support changes of the configuration of
access constrained UI elements at runtime, realizing acceptable perfor-
mance and update behaviour, and an easy integration with existing Web
applications. In this paper, we address these challenges through a novel
approach supporting constrained and customized UI views that support
runtime changes and integrate well with existing Web applications. Us-
ing a prototypical implementation, we show that the approach provides
acceptable update behaviour and requires only a small performance over-
head for the access control tasks with linear scalability.

1 Introduction

Real-time collaborative Web applications such as Google Docs1, Etherpad2, or
Creately3 aim to efficiently support the joint work of different team members,
allowing them to collaboratively work on the same artifact at the same time. In
addition to such popular examples, the real-time collaboration approach can also
be used in typical business applications that often require multiple forms to be
filled out by different stakeholders [7]. A crucial – though in the context of real-
time collaborative Web applications often neglected – aspect of these business
applications is access control.
1 https://docs.google.com
2 http://etherpad.org
3 http://creately.com

In recent years, role-based access control (RBAC) [14] emerged as a standard
for access control in software systems. In RBAC, roles are used to model differ-
ent job positions and scopes of duty within an information system. These roles
are equipped with permissions to perform tasks. Human users (subjects) are as-
signed to roles according to their work profile [17]. For example, in an e-health
application only a doctor shall be allowed to file a report. Moreover, a second
doctor needs to check and sign the same report (four-eyes principle). In this ex-
ample the role doctor is equipped with both permissions, i.e., filing and signing
a report. To prevent a single subject from performing both tasks on the same
report (thus undermining the four-eyes principle) we have to constrain these two
tasks with an entailment constraint. Entailment constraints (see, e.g., [3,18,20])
provide means for placing restrictions on the subjects who can perform a task x
given that a certain subject has performed another task y. Mutual exclusion
and binding constraints are typical examples for entailment constraints. For in-
stance, a dynamic mutual exclusion (DME) constraint defines that two subjects
must not perform two mutually exclusive tasks in the same instance of a Web
document. This means, that the permissions to perform two DME tasks can
be assigned to the same subject or role, but for each instance of a particular
Web document, we need two distinct individuals to perform both tasks. Binding
constraints, on the other hand, can be seen as the opposite of mutual exclusion
constraints. For example, subject binding defines that the subject who performed
the first task must also perform the bound tasks.

Ideally, realizing form-based business applications with a real-time collabora-
tive Web application approach would enable us to enforce RBAC and entailment
constraints directly as the users collaboratively work on the forms, i.e., by con-
straining (e.g. by disabling, locking, or hiding) certain control elements in the
user interfaces (UI) for certain subjects. However, so far this topic has – to the
best of our knowledge – not been addressed in the existing literature. Major
open challenges in this context are how to support changes of the configuration
of access constrained UI elements at runtime, realizing acceptable performance
and update behaviour, and the easy integration with existing Web applications.

In this paper, we address these challenges that are inherent to enforcing
access control constraints in the context of real-time collaborative Web applica-
tions. The client-side part of our approach follows the Model-View-ViewModel
pattern [15]. Additional server-side components complement our service-based
architecture. The resulting architecture enables us to support runtime changes
and facilitates the integration our approach with existing applications (see Sec-
tion 6.2). Furthermore, we show that the approach provides acceptable update
behaviour and requires only a small performance overhead for the access con-
trol tasks. In our experiments, it shows linear scalability (see Section 6.1). The
remainder of this paper is structured as follows: An example scenario motivates
our approach in Section 2. In Sections 3 and 4 we propose a novel approach
supporting constrained and customized UI views. In Section 5, we describe a
prototypical implementation and revisit the motivating example. After compar-
ing to related work in Section 7 we conclude in Section 8.

2 Motivating Example and Challenges

As a motivating example, consider a Web-based application where patient health
records are maintained using forms for data entry. The data entry procedure is
typically included in a business process with well-defined roles and responsibil-
ities (see, e.g., [9]). In previous work, we presented CoCoForm [7], a real-time
collaborative Web application framework in which several users can concurrently
fill out HTML forms.

Shared Model
Instance State

Name

Subject: A
Role: Nurse

1:

2:

3:

Therapy 1
Therapy 2

Subject: B
Role: Physician

Name1:

2:

3:

Therapy 1
Therapy 2

Subject: C
Role: Physician

Name1:

2:

3:

Therapy 1
Therapy 2

Subject: D
Role: Patient

Name1:

2: Therapy 1
Therapy 2

Figure 1: Form-based Collaborative Web Application with Customized Views

Figure 1 shows a simplified example of using CoCoForm in the e-health do-
main. It includes four subjects with shared access to the health record of a
patient. The subjects take different roles (nurse, physician, patient) which de-
fine their permissions within the application. The nurse enters the name and
other personal data of the patient into a textfield (identified by “1”), physician B
adds “Therapy 1” to the list of therapies (field “2”), and physician C suggests an
additional specialized therapy “Therapy 2”. The entire form record is then con-
firmed by both physicians (buttons “3”). To enforce the four-eyes principle (DME
constraint), after physician B clicks the first submit button, the second button
is deactivated for physician B, but remains active for physician C. Moreover,
each physician can only modify his own therapy suggestions (subject-binding
constraint). Finally, the patient should have read-only access to the data. To
enforce these constraints, each user has a customized view with partial access to
the collaboratively shared model. In Figure 1, white elements can be accessed
and modified by the respective user, whereas elements with gray background are
subject to access limitations (e.g., read-only but not editable).

A major challenge to realize such customized views for access control con-
straints is that the configuration of constrained UI elements must be computed
server-side and effected client-side. Moreover, this configuration might change
dynamically at runtime. Other challenges are related to performance and update
behaviour : This means, we immediately need to deliver customized views to all
UIs that access the same instance of a Web document (e.g., in the example the
UIs need to be updated immediately after one of the subjects changes a docu-
ment). Such an immediate update is required to prevent users from performing
actions that were either already performed by another user or that are con-

strained by an entailment constraint (which may have a direct impact on the
subjects who are allowed to fill in certain form field for example, see Section 1).
In order to be applicable in real-world application scenarios, the approach should
efficiently handle large numbers of simultaneously connected users. Finally, the
approach should allow for an easy integration with existing Web applications.

3 Approach Synopsis

The aim of our approach is to support access control and customized views in
real-time collaborative Web applications. The View of a Web application rep-
resents the UI with all visible and invisible elements, form input fields, inter-
active content, and more. The elements and associated interactions in the UI
are subject to constraints (e.g., actions that require a certain permission) which
are encoded in well-defined (RBAC) models. Our approach maps the model ele-
ments to configuration properties, and clients request the runtime values of these
configurations from a View Service. The user-specific configurations computed
by the server-side View Service are then applied to the View on the client-side.

View

PeterName:

Save:

ViewModelData Binding

<input type='text' data-bind='value: Name' />
<button data-bind='onclick: Save' />

 {
 Name: 'Peter',
 Save: function() { … }
 }

Figure 2: Data Binding between View and ViewModel

As the basic binding concept between the View and the Model, our approach
applies the Model-View-ViewModel (MVVM) pattern [15]. The MVVM is a spe-
cific version of the Presentation Model pattern (see [6]). It relies on the data
binding concept, which ensures that the View and the state of its components
are bound to properties of a ViewModel. This means that changes of the View-
Model are automatically reflected in the View. For instance, in Figure 2 we can
see that the value attribute of the <input> field is bound to the property Name
in the ViewModel. Secondly, the onclick handler of the button is bound to the
ViewModel ’s Save property. In general, the ViewModel acts as a mediator be-
tween the Model and the View by encapsulating all logic (e.g., formatting and
data type conversion) needed to expose the properties and functionalities of the
Model to the bound View. Additionally, it is in charge of reacting to user com-
mands (e.g., a user fills out an input field) and reflecting them by performing
the corresponding Model state changes. In general, the MVVM pattern makes
it easy to realize the client-side part of the required View Customization func-
tionality. In particular, we can customize a client’s View just by configuring its
ViewModel properties.

MVVM
Components

Collaboration
Components

View ViewModel

Model
(Shared)

Model
(Local Copy)

View
Updater

View
Service

RBAC
Service

data
binding

synchronizes requests
configuration

accesses /
manipulates

uses

observes changes

applies configuration

accesses / manipulates

Client

Server
Collaboration

Service

View Customization
Components

Figure 3: Architectural Overview

Figure 3 provides an architectural overview of the components (i.e., both
server-side and client-side) and interactions in our approach that are needed to
realize the required View Customization functionality. The left-hand column of
the figure depicts the core components of the MVVM architecture. In contrast
to the classic MVVM architecture, in our approach the ViewModel does not
directly access/manipulate the shared Model (i.e., the shared application state).
Instead, it accesses/manipulates only a local copy of the shared Model. That
is, a Collaboration Service, which is the cornerstone of a real-time collaborative
Web application, ensures that the server-side shared Model is constantly kept in
sync with all client-side copies of it. While the Collaboration Service allows us
to let users collaboratively work on the same Web document, it certainly does
not provide means for constraining (e.g., disabling, locking, or hiding) certain
control elements in the UI for certain users. Consequently, the View Service
uses the central RBAC Service to compute ViewModel configurations. Although
these ViewModel configurations are computed server-side, they need to be ef-
fected client-side, i.e., to constrain UI elements in the Views of each client. To
account for this, the client-side View Updater component of each client actively
requests (i.e., pulls) the computed ViewModel configurations from the View Ser-
vice. Eventually, these configurations are then applied to the ViewModel, which
in turn – through data binding – effectively constrain the Views of each client.

4 Supporting Customized Views

This section details how the different components of the architecture outlined in
Figure 3 enable us to enforce access control policies and entailment constraints
directly as the users collaboratively work on a shared Model, i.e., by constraining
certain control elements in the UI for certain subjects.

Firstly, we want to exemplify our UI customization approach using Figure 4.
The figure is divided in two parts, the client-side part and the server-side part.

The figure shows that the Model contains only a single property Name which is
mapped 1 to both, a value and a label property in the ViewModel. Next, by
applying the basic MVVM pattern, the two properties are bound 2 to concrete
<label> and <input> HTML elements in the View.

View

ViewModelModel

 {
 Name: 'Peter'
 }

 {
 value: 'Peter',
 label: 'Name',

 disable: false
 }

<label for='name' data-bind='text: label'></label>
<input id='name' type='text' data-bind='value: value, disable: disable' />

View
Service

Customizable
Properties

RBAC
Service

uses

applies
values

1

View
Updater

Client

2
4

5 returns
values

computes
values for

Server

6

3
requests

values

Figure 4: View Customization Example

Next, we assume that the <input> field (and the associated action in the
RBAC model) is constrained by some RBAC policy. To customize the <input>
and dynamically make it enabled or disabled, we add the disable property to
our ViewModel. The name of the property (disable) is added to the set of Cus-
tomizable Properties. That is, we do not want the client to decide about the
value of the disable property on its own. Instead, the server has to compute the
values for each Customizable Property. Thus, the client requests 3 the values
from the server-side View Service. The View Service uses the RBAC Service to
determine the concrete value for the disable property (true if and only if the
client is allowed to change the Name property of the Model). The View Service
returns 4 the list of Customizable Properties together with their customized
values to the client-side View Updater. Next, the View Updater applies 5 these
customized values to the ViewModel. Finally, the property value is automati-
cally reflected 6 in the View, as we have bound the disable property of the
ViewModel to the disabled flag of our <input> field.

Abstracting from the example in Figure 4, the basic idea of our approach is
that the core ViewModel is augmented with additional Customizable Properties.
These properties are used to easily implement customizations in the View (e.g.,
enabling/disabling an <input> field). While the property names are defined and
processed on the client-side, the actual values for these properties are computed
for each user separately on the server side. In summary, the purpose of the
Customizable Properties is twofold:

1. Enablement. At the client-side, these properties have an enabling charac-
ter, i.e. they allow for realizing the customization of the View.

2. Contract. Additionally, they can be considered as a contract between the
ViewModel and the server-side View Service. That is, the client-side View-

Model defines the set of Customizable Properties and the server-side View
Service provides the actual values for these properties. For instance, if the
server returns a value of true for the disable property (see the example
above), the client is responsible for actually disabling the <input> field in
the client’s View. Hence, the client and the server must have a common view
of the semantics of each property.

4.1 Client-side Updates of the ViewModel

The View Updater is in charge of requesting and applying ViewModel config-
urations from the View Service. We propose a simple request/response style of
communication between these two components.

1 var subject, role,
2 viewModel = {
3 value: ’Peter’, label: ’Name’, // core properties
4 disable: false, visible: true // customizable properties
5 };
6
7 function requestView() {
8 var xhr = new XMLHttpRequest(),
9 uri = ’/viewService?subject=’ + encodeURI(subject) + ’&role=’ + encodeURI(role);

10 xhr.open(’GET’, uri);
11 xhr.onload = function() {
12 var configuration = JSON.parse(this.response); // e.g. {disable: true, visible: true}
13 for (var property in configuration) {
14 viewModel[property] = configuration[property];
15 }
16 };
17 xhr.send();
18 };
19
20 function onModelChange(property, value) { // called whenever the Model changes
21 requestView();
22 viewModel[property] = value;
23 };

Listing 1: A Simple View Updater Example

Listing 1 illustrates an excerpt of the corresponding exemplary client-side
JavaScript code. After firing the request (line 17) we asynchronously process the
response that contains the requested ViewModel configuration. In the example
from Listing 1, the Customizable Properties consist of two properties disable and
visible (line 4). Correspondingly, the ViewModel configuration returned by the
View Service contains concrete values for these two properties, e.g., {disable:
true, visible: true}. The next step is to apply this configuration to our View-
Model. To this end, the JSON-encoded result of the View Service is parsed, and
each entry in the result is applied to the local viewModel variable (lines 12-15).

Having discussed how the View Updater requests and applies ViewModel
configurations, we now draw our attention to the question when it should issue
its requests. In general, we can say that this depends on the application’s context.

However, in our context, i.e., RBAC and entailment constraints, we can also say
that Views need to be updated exclusively after a Model change has happened.
Whenever a property is changed in the shared Model (i.e., the application state),
all Views need to be re-computed and (potentially) updated. This circumstance
is also reflected in Listing 1 (lines 20-23), where we can see that a new request is
triggered for every Model change that happens (via the onModelSync() callback).

4.2 Server-side Computation of ViewModel Configurations

The computation of ViewModel configurations is done server-side, i.e., by the
View Service. Upon a request, the View Service returns a ViewModel configura-
tion to the requesting client-side View Updater component.

1 function onRequest(subject, role) {
2 var property = ’Name’, // there is just a single ’Name’ property in our model
3 response = {
4 disable: !rbacService.canWrite(subject, role, property),
5 visible: rbacService.canRead(subject, role, property)
6 };
7 return response; // e.g. {disable: false, visible: true}
8 }

Listing 2: Basic View Service Example

For instance, in Listing 2 we can see an excerpt of the implementation of a
very basic View Service4 that is tailored to return a configuration for the set of
Customizable Properties defined in the application code presented in Listing 1. In
essence, the service has to compute values for the two Customizable Properties,
i.e., disable and visible. As we can see (line 4), it “asks” the central RBAC
Service if the provided subject/role combination has the permission to change
(i.e., write) the application’s Model property, i.e., Name. A positive answer (i.e.,
the user has the permission to change the Model property) is reflected with a
disable value of false, which in turn enables the UI element and eventually
allows this specific user to manipulate the Model property in her customized
View. Similarly, the service uses the RBAC Service to determine a value for the
visible property. Eventually, it returns the JSON-encoded configuration (line 7)
to the requesting client. Note, that the required parameters of the service, i.e.,
subject and role could be supplied as URI parameters (as in line 9 in Listing 1).

5 Implementation – The CoCoForm Framework

This section discusses a prototype implementation of our approach, called Con-
strainable Collaborative Forms (CoCoForm)5. We used CoCoForm to implement
and evaluate the e-health record case from Section 2.
4 Note that we chose JavaScript solely for its well-known and concise syntax.
5 A proof-of-concept demo is available at http://demo.swa.univie.ac.at/cocoform2

Our prototype is based on the OpenCoweb6 framework, which consists of
both, a Collaboration Service (as in Figure 3) and a (client-side) JavaScript
API. The latter allows to subscribe to incoming Model change events, i.e., by
registering a callback function which in turn enables us to trigger our View
Updater component (as in Listing 1).

The View Updater issues simple XMLHttpRequests to obtain ViewModel
configurations from the View Service. The View Service is implemented as a
plain HTTP Service in Java, using the JAX-RS API7, and the configurations
are returned in JSON format. The central RBAC Service, which is utilized by
the View Service, has been presented in previous work [7]. We use a model-driven
approach for defining forms and securing them using access control constraints.
Server-side we internally work with Ecore8 model instances which are marshalled
into JSON for the client-side JavaScript application.

Besides OpenCoweb’s JavaScript API, we use the Knockout9 library for re-
alizing the MVVM pattern in the client-side application code. In particular, we
also use Knockout’s Mapping plugin which allows us to automatically transform
the JSON-encoded Model into a ViewModel. The Mapping plugin also allows
us to easily update the ViewModel whenever the Model changes. Additionally,
we augment the ViewModel with additional visible and editable properties.
We also use Knockout’s template mechanism to (1) create the needed input
fields and buttons on-the-fly and (2) establish data binding using corresponding
data-bind attributes.

1

2

Figure 5: Customized Views and Dynamic Mutual Exclusion with CoCoForm

Motivating Example Revisited Now we want to revisit the dynamic mutual ex-
clusion example from Section 2 and discuss a concrete implementation using
CoCoForm. Figure 5 shows four screenshot excerpts of an example form with

6 OpenCoweb, http://opencoweb.org
7 JAX-RS, http://jax-rs-spec.java.net
8 Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf
9 Knockout, http://knockoutjs.com

two dynamically mutual exclusive buttons. In particular, these buttons represent
the first and the second signature on a patient record (as described in Section 2).
Figure 5 is vertically split into two columns, i.e., the View of the first user (sub-
ject B) and the second user (subject C). Both subjects are concurrently working
on this form. In the first row (indicated with 1) we can see that both but-
tons are available for both subjects. The mouse pointer in the upper left part
indicates that subject B clicks the first signature button. This click results in a
Model change which triggers the View Updater component of both clients. As
a result, the View Updaters of both clients issue a request to the View Service,
resulting in the updated Views in 2 . While the first button has been disabled
for both clients (which reflects the requirement that any form element can only
be manipulated once), the second button is only disabled for subject B. This is
due to the dynamic mutual exclusion constraint which demands that subject B,
who has just clicked the first button, must be prevented from clicking the second
button (see Section 2). However, subject C is still allowed to click the second
button. In summary, this example illustrates how our approach enforces access
control constraints in real-time collaborative Web applications by dynamically
changing the UIs of each user at runtime.

6 Evaluation

In the following sections we discuss both, our lessons learned and the limitations
of our approach and the findings of the conducted performance evaluation.

6.1 View Service Performance Evaluation

In the context of real-time collaborative Web applications, users typically ex-
pect instantaneous update behavior, which led us to study in how far our UI
customization approach meets this requirement. We identify the View Service as
a potential performance bottleneck. In particular, we anticipate that requests is-
sued by a potentially large number of users (i.e., resulting from a Model change)
need to be handled concurrently by CoCoForm’s View Service.

All measurements have been conducted on a machine equipped with a 2.4
GHz dual core CPU, 8 GB RAM, running Ubuntu GNU/Linux 12.10. Both,
the View Service and the testing tool, i.e., Apache’s ab tool10, ran on the same
machine. Hence, the measurements are free from any network-induced effects
such as latency, jitter and so on.

Figure 6 depicts the average response times of both, the actual View Service
(solid line) and a “Null” (i.e., no computation at all) Service (dashed line), for a
given number of concurrent requests. For instance, in the case of 600 concurrent
requests, the average response time for all clients is roughly 200 ms while the
response time of the Null Service is roughly 50 ms. This means, that in this case
it takes roughly 150 ms to compute a single ViewModel configuration, while the
rest of 50 ms accounts for the underlying communication and Web Service stack.
10 Apache ab tool, http://httpd.apache.org/docs/2.4/programs/ab.html

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Concurrent Requests

View Service:
Null Service:

Figure 6: View Service Response Times

The evaluation results indicate that our View Service implementation has
linear scalability. Even in the case of 2000 users working on the same form
document collaboratively, the average response time remains well below a second.
In our experiment, the View Service’s response times amount to approximately
four times the response times of the Null Service. As the Null Service represents
the theoretical minimum that is possible for the given Web Service framework,
we consider the performance overhead acceptable.

6.2 Lessons Learned

We implemented the CoCoForm prototype (see Section 5) to demonstrate the
feasibility of our approach (see Section 4). We showed that access control policies
and entailment constraints in the context of real-time collaborative Web appli-
cations can effectively be enforced by dynamically constraining UI elements for
certain subjects. In the following paragraphs we want to discuss our lessons
learned and the limitations of our approach.

Our approach is complementary to currently available frameworks and solu-
tions that support the development of real-time collaborative Web applications
such as Apache Wave11, ShareJS12 and OpenCoweb (see Section 5). This is due
to the fact that it is completely decoupled from the collaborative aspects of the
application. In essence, supporting customized views using our approach merely
requires the deployment of a single, dedicated and self-contained View Service as
well as hooking-in the View Updater code into the client-side application code.

Although our approach is built upon the MVVM pattern, it does not exclude
other approaches (e.g., the classic Model-View-Controller pattern). Instead, we
argue that our approach can coexist with others. In that case, the ViewModel is
solely used to realize the customizable parts of the View. Hence, it just contains
the set of Customizable Properties. The only requirement is that the correspond-
ing DOM nodes (e.g., <input> elements) are augmented with additional data
binding attributes (e.g., data-bind). Note that this even works in the case of

11 Apache Wave, http://incubator.apache.org/wave
12 ShareJS, http://sharejs.org

dynamically generated (i.e., generated using JavaScript code) DOM nodes, as
long as it is possible to add the data binding attributes.

A major concern – especially in the context of real-time collaborative Web
applications – is the ability to apply the View customization nearly instanta-
neously. In other words, the response times of the View Service must be kept
low. Keeping the response time low with a growing number of simultaneously
connected users, requires that the system is able to scale. Our View Service it-
self is completely stateless, as (1) each request contains all necessary information
(e.g., subject and role) that is needed to compute a ViewModel configuration and
(2) no information at all needs to be persisted. This stateless nature as well as
the simple request/response style of communication between the View Updater
and the View Service allows for scaling horizontally in a straightforward man-
ner, i.e., the communication can be routed through a load-balancing proxy that
distributes each request among multiple instances of the service.

However, the request/response communication style also comes with a couple
of challenges. For example, there is the issue of “the needless request”. This is
the case when the View Service returns a ViewModel configuration that is not
different from the currently active one. Hence, we could have saved both client-
side and server-side computing resources (e.g., CPU time, network bandwidth,
etc.) if we simply had not issued this “needless request” in the first place. This
issue can be addressed using a push approach (instead of the presented pull
approach). That is, the View Service would selectively push new ViewModel
configurations to the clients only if it is necessary (i.e., at least one ViewModel
property needs to be changed). However, this push approach introduces a certain
amount of complexity to the View Service. For instance, it would require an
explicit session handling, i.e., in a push scheme we have to maintain a list of
connected clients to correctly update the corresponding ViewModels. Moreover,
a push scheme would also require to keep track of each client’s ViewModel to
determine if we need to push a new ViewModel to a particular client. In summary,
the push approach allows for avoiding “needless requests” (in fact, no requests are
made at all) while the pull approach comes with a lower complexity, especially
when scaling (i.e., when multiple instance of the View Service have to coordinate
session with each client’s ViewModel configuration). Another idea to – at least –
mitigate this problem would be a more efficient client-side triggering logic. For
instance, we could provide the clients with a list of Model properties that are
not constrained by any access control constraint at all. Then, the clients would
not need to request a new ViewModel configuration whenever a Model change
event arrives that is contained in the list of unconstrained properties.

In our approach access control policies and entailment constraints are en-
forced client-side, i.e., by constraining UI elements. From a security perspec-
tive, however, we often cannot trust code that is executed on the client (i.e.,
the browser). The reason is that we can not prevent a potential attacker from
modifying the code to be executed. For instance, an attacker might be able to
change the ViewModel configuration to gain access to a constrained UI element
and eventually pass a Model change event (i.e., concerning a constrained Model

property) to the Collaboration Service. However, we could contain the effects of
such client-side code injections by preventing such unauthorized Model changes
(1) from being applied to the server-side Model and (2) from being distributed
to other session participants. This can be achieved by routing all incoming (i.e.,
coming from the clients) Model change events trough an enforcement proxy. This
proxy uses the RBAC Service to decide if it should forward the event to the Col-
laboration Service (i.e., in case the client has the permission to change the Model
property) or not. This guarantees that client-side code injections do not lead to
server-side Model changes or impact session participants.

Finally, our approach assumes that the Model is being synchronized with
all clients. That is, all clients “see” exactly the same Model. However, if this
Model contains sensitive information, this might be an issue. We will address
this problem as part of our ongoing research.

7 Related Work

In this section we discuss related work in the area of customized and shared
application views, collaboration platforms as well as access control enforcement.

Customized and Shared Application Views. Similar to customized
views in our approach, Koidl et al. [12] propose user-specific Web site rendering.
However, their approach aims at user-centric personalization of Web experience,
whereas the customized views in our approach result from RBAC policies and
entailment constraints. An interesting aspect in their solution is that the per-
sonalization is cross-site, i.e., it spans the Web sites of multiple providers. Our
approach currently does not implement cross-provider policies. However, we pre-
sented a related approach for cross-organizational access control in Web service
based business processes in [9]. As part of our future work, we will integrate
cross-site capabilities in our approach for real-time collaborative Web applica-
tions. Berry et al. [2] have applied role-based view control to desktop applica-
tions. Their approach captures the virtual framebuffer of application windows
and applies blurring, highlighting, pixelizations, and other manipulations over
the rendered view. Our approach benefits from the fact that manipulation of Web
user interfaces is easier to achieve; using the path to the target DOM element,
our client-side View Updater takes care of customized view manipulations.

Collaboration Platforms. The seminal work of Sun et al. [19] proposes
the transparent adaptation (TA) approach to convert single-user applications
into collaborative multi-user applications. The cornerstone of TA is operational
transformation (OT) [4]. Our approach is orthogonal to OT: the RBAC policies
and entailment constraints provide an application workflow with well-defined re-
sponsibilities, and we maintain document consistency by allowing only sequences
of operations that comply with this workflow. Farwick et al. [5] discuss an ar-
chitecture for Web-based collaborative metamodeling. Their framework allows
multiple users to work on graphical meta-models collaboratively. Modifications
of the (meta-)models are secured by basic access control measures, but in con-
trast to our work, they do not explicitly address customized views and dynamic

updates resulting from the enforcement of RBAC entailment constraints. Hein-
rich et al. [8] present a generic collaboration infrastructure aimed at transforming
existing single-user Web applications into collaborative multi-user Web applica-
tions by synchronizing DOM trees. In other words, their approach makes sure
that the DOM trees of all clients in a collaborative session is constantly kept in
sync. As we strive for customizing the DOM tree for each client, this approach is
completely at odds with ours. Consequently, we require synchronization to take
place at the model-level instead of the view-level (as in [8]).

Security and Access Control Enforcement. A plethora of approaches
have been presented for integrating security and access control in Web appli-
cations. Joshi et al. [10] provide an early study on generic security models for
Web-based applications. Starnberger et al. [16] use smart card based security
and discuss a generic proxy architecture to enforce authorizations. In [1], Bel-
chior and colleagues model RBAC policies using RDF triples and N3Logic rules.
Mallouli et al. [13] use extended finite state machines (EFSM) to model sys-
tems with OrBAC [11] (Organization Based Access Control) security policies.
However, none of these approaches addresses the enforcement of access control
policies and entailment constraints in dynamic real-time Web applications.

8 Conclusion and Future Work

In this paper, we demonstrate that access control policies and constraints –
in particular entailment constraints – in the context of real-time collaborative
Web applications can effectively be enforced by dynamically constraining UI el-
ements for certain subjects. We show that our service-based approach can be
used to realize the corresponding UI view configuration functionality and we
provide evidence that it is potentially capable of meeting the – especially in the
context of real-time collaborative Web applications important – requirement of
nearly instantaneous update behavior, even for a large number of simultaneously
connected users. Although the client-side part of the UI view configuration func-
tionality is built upon the MVVM pattern, we show that it can easily coexist
with others.

As future work we will look into privacy issues (see Section 6.2) and apply
our approach to other types of collaborative processes. In particular, we are in-
terested in establishing the concept of entailment constraints in more dynamic
processes (e.g., text editing or modeling) where we will have to deal with com-
pletely dynamic (i.e., changing at runtime) access control and constraint models.

References

1. Belchior, M., Schwabe, D., Silva Parreiras, F.: Role-based access control for model-
driven web applications. In: 12th International Conference on Web Engineering
(ICWE). pp. 106–120 (2012)

2. Berry, L., Bartram, L., Booth, K.S.: Role-based control of shared application views.
In: 18th ACM symposium on User interface software and technology (UIST). pp.
23–32 (2005)

3. Bertino, E., Ferraria, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security 2(1), 65–104 (1999)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD
Record 18(2), 399–407 (1989)

5. Farwick, M., Agreiter, B., White, J., Forster, S., Lanzanasto, N., Breu, R.: A web-
based collaborative metamodeling environment with secure remote model access.
In: 10th International Conference on Web Engineering (ICWE). pp. 278–291 (2010)

6. Fowler, M.: Presentation model. Essay, July (2004)
7. Gaubatz, P., Zdun, U.: Supporting entailment constraints in the context of collab-

orative web applications. In: 28th Symposium On Applied Computing (2013)
8. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web

applications for shared editing: a generic transformation approach. In: Proceedings
of the 21st international conference on World Wide Web. pp. 1057–1066 (2012)

9. Hummer, W., Gaubatz, P., Strembeck, M., Zdun, U., Dustdar, S.: An integrated
approach for identity and access management in a SOA context. In: 16th ACM
Symposium on Access Control Models and Technologies (SACMAT) (2011)

10. Joshi, J.B.D., Aref, W.G., Ghafoor, A., Spafford, E.H.: Security models for web-
based applications. Communications of the ACM 44(2), 38–44 (2001)

11. Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C.,
Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
4th IEEE Int. Workshop on Policies for Distributed Systems and Networks (2003)

12. Koidl, K., Conlan, O., Wade, V.: Towards user-centric cross-site personalisation.
In: 11th International Conference on Web Engineering (ICWE). pp. 391–394 (2011)

13. Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens, F.: A formal ap-
proach for testing security rules. In: 12th ACM symposium on Access control mod-
els and technologies (SACMAT). pp. 127–132. ACM (2007)

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role- based access control mod-
els. Computer 29(2), 38 –47 (1996)

15. Smith, J.: WPF apps with the Model-View-ViewModel design pattern. MSDN
magazine (2009)

16. Starnberger, G., Froihofer, L., Goeschka, K.M.: A generic proxy for secure smart
card-enabled web applications. In: 10th International Conference on Web Engi-
neering (ICWE). pp. 370–384 (2010)

17. Strembeck, M.: Scenario-driven Role Engineering. IEEE Security & Privacy 8(1)
(January/February 2010)

18. Strembeck, M., Mendling, J.: Generic algorithms for consistency checking of
mutual-exclusion and binding constraints in a business process context. In: On
the Move to Meaningful Internet Systems (OTM). pp. 204–221 (2010)

19. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent adaptation of
single-user applications for multi-user real-time collaboration. ACM Transactions
on Computer-Human Interaction 13(4), 531–582 (2006)

20. Wainer, J., Barthelmes, P., Kumar, A.: W-RBAC - A Workflow Security Model
Incorporating Controlled Overriding of Constraints. International Journal of Co-
operative Information Systems (IJCIS) 12(4) (Dec 2003)

