Why you can't order $50^{\circ}F$ of beer and other puzzles

Lucas Champollion New York University

champollion@nyu.edu

8th International Workshop on Constraints and Language Processing, CSLP 2016

October 17, 2016

(1)	a. b.	I ran for/*in five minutes. I ran all the way to the store in/*for five minutes.		
(2)	a. b.	There are five pounds of books in this parcel. *There are five pounds of book in this parcel.		
(3)	a. b.	Please bring me 50 ounces of beer. *Please bring me 50 degrees of beer.		
(4)	a. b.	The ants in my kitchen are numerous. *All the ants in my kitchen are numerous.		
(5)	a.b.c.d.e.f.	five pounds of rice five liters of water five hours of talks five miles of railroad tracks *five miles per hour of driving *five degrees Celsius of water	weigh volum duration spatial exten *speed *temperatur	
(6)		measure function μ is <i>monotonic</i> iff for any two entities a and b , if a is a property of b , then $\mu(a) < \mu(b)$.		
(7)	a.b.c.d.	John waited for five hours. The crack widens for five meters. *John drove for thirty miles an hour. *The soup boiled for 100 degrees Celsius.	duration spatial extent *speed *temperature	
(8)	a.	John ran for five minutes.	ateli	

- *John ran all the way to the store for five minutes.
- *telic

John ate apples for three hours. (9)

atelic

b. *John ate ten apples for three hours.

*telic

- P has the subinterval property if (10) $\forall e[P(e) \rightarrow \forall i[i < \text{runtime}(e) \rightarrow \exists e'[P(e') \land e' < e \land i = \text{runtime}(e')]]]$ (Whenever P holds of an event e, then at every subinterval of the runtime of e, there is a subevent of which P also holds.)
- John and Mary waltzed for an hour (11)⇒ #John and Mary waltzed within every single moment of the hour ⇒ John and Mary waltzed within every short subinterval of the hour
- (12)The Chinese people have created abundant folk arts ... passed on from generation to generation for thousands of years.
- (13)The police blocked streets for miles around the museum.
- $\forall e[\text{waltz}(e) \rightarrow \forall i[i < \text{runtime}(e) \rightarrow \exists e'[\text{waltz}(e') \land e' < e \land i = \text{runtime}(e')]]]$ (14)(Whenever waltz holds of an event e, then at every subinterval of the runtime of *e*, there is a subevent of which *waltz* also holds.)
- Let ε be a function that gives us access to the subintervals: (15) $\varepsilon(\lambda t[\text{hours}(t) = 1])(t')$ is true only if t' is less than one hour.
- (16) $x \in {}^*(\lambda y.B(y))$ means: x consists of one or more parts of which B holds
- $\forall e[\text{waltz}(e) \rightarrow e \in {^*}\lambda e' \left(\begin{array}{c} \text{waltz}(e') \land \\ \varepsilon(\lambda t[\text{hours}(t) = 1])(\text{runtime}(e')) \end{array} \right)]$ (17)
- Stratified reference (Example) (18)"SR_{runtime}, $\varepsilon(\lambda t[hours(t) = 1])(\lambda e[waltz(e)])$ " abbreviate (17).
- Stratified reference (Definition) $SR_{f,\varepsilon(K)}(P) \stackrel{\text{def}}{=} \forall x [P(x) \to x \in {}^*\lambda y \begin{pmatrix} P(y) \land \\ \varepsilon(K)(f(y)) \end{pmatrix}]$ (19)
- waltz for an hour (20)

Satisfied presupposition:

Satisfied presupposition:
$$\forall e[\text{waltz}(e) \rightarrow e \in {}^*\lambda e' \left(\begin{array}{c} \text{waltz}(e') \land \\ \varepsilon(\lambda t[\text{hours}(t) = 1])(\text{runtime}(e')) \end{array} \right)]$$
 (Every waltzing event consists of waltzing subevents whose

(Every waltzing event consists of waltzing subevents whose runtimes are less than an hour.)

(21)eat apples for three hours

Satisfied presupposition:

$$\forall e[\llbracket \text{eat apples} \rrbracket(e) \to e \in {}^*\lambda e' \left(\begin{array}{c} \llbracket \text{eat apples} \rrbracket(e') \land \\ \varepsilon(\lambda t[\text{hours}(t) = 3])(\text{runtime}(e')) \end{array} \right)]$$

(Every event in which one or more apples are eaten consists of subevents in which one or more apples are eaten and whose runtimes are less than three

hours.)

- (22) *eat ten apples for three hours
 - Failing presupposition:

$$\forall e[[\text{eat ten apples}](e) \rightarrow e \in {}^*\lambda e' \left(\begin{array}{c} [\text{eat ten apples}](e') \land \\ \varepsilon(\lambda t[\text{hours}(t) = 3])(\text{runtime}(e')) \end{array} \right)]$$

(Every eating-ten-apples event consists of eating-ten-apples subevents whose runtimes are less than three hours.)

(23) a. *John drove for thirty miles an hour.

*speed

b. *The soup boiled for 100 degrees Celsius.

*temperature

(24) *drive for thirty miles per hour

Failing presupposition: $SR_{speed, \epsilon([thirty mph])}([drive])$

(Every driving event consists of driving subevents whose speeds are less than thirty mph.)

- (25) run for three hours / three hours of running
 - $\textbf{Satisfied presupposition:} \ SR_{runtime, \epsilon([\![three\ hours]\!])}([\![run]\!])$

(Every running event consists of running subevents whose runtimes are less than three hours.)

- (26) fifty liters of beer
 - Satisfied presupposition: $SR_{volume, \epsilon(\|fifty | liters\|)}(\|beer\|)$

(Every beer amount consists of beer parts whose volumes are less than fifty liters.)

- (27) *fifty degrees of beer
 - Failing presupposition: $SR_{temperature, \epsilon([[fifty degrees]])}([[beer]])$

(Every beer amount consists of beer parts whose temperatures are less than fifty degrees.)

- (28) five feet of snow
 - **Satisfied presupposition:** $SR_{height, \epsilon(\llbracket five \ feet \rrbracket)}(\llbracket snow \rrbracket)$

(Every snow amount consists of snow parts whose heights are less than five feet.)

- (29) a. Three safari participants saw thirty zebras.
 - Available reading: Three safari participants saw at least one zebra each, and thirty zebras were seen overall.
 - b. All the safari participants saw thirty zebras.
 - *Unavailable reading*: Each safari participant saw at least one zebra, and thirty zebras were seen overall.
- (30) a. Three safari participants saw zebras.

Available reading: Three safari participants saw at least one zebra each, and at least two zebras were seen overall.

b. All the safari participants saw zebras.

Available reading: Each safari participant saw at least one zebra, and at least two zebras were seen overall.

- (31) a. All the children smiled. \Rightarrow Each child smiled.
 - b. *All the ants in my kitchen are numerous.
- (32) **Presupp. of** *for* 1*h*: $\forall e[VP(e) \rightarrow e \in {}^*\lambda e' \begin{pmatrix} VP(e') \land \\ \varepsilon(\lambda t[hours(t) = 1])(runtime(e')) \end{pmatrix}]$ (Every VPing event consists of one or more VPing events whose *runtimes* are *less than* an hour.)
- (33) **Presupposition of** *all*: $\forall e[\text{VP}(e) \rightarrow e \in {}^*\lambda e' \begin{pmatrix} \text{VP}(e') \land \\ \text{Atom}(\text{ag}(e')) \end{pmatrix}]$ (Every VPing event consists of one or more VPing events whose *agents* are *atoms*.)
- (34) All the children smiled. Presupposition: $\forall e[\text{smile}(e) \rightarrow e \in {}^*\lambda e' \left(\begin{array}{c} \text{smile}(e') \land \\ \text{Atom}(\text{ag}(e')) \end{array} \right)]$ (Every smiling event consists of one or more smiling events whose agents are atoms. This entails that each child smiled.)
- (35) All the ants are numerous smiled. Failing presupposition: $\forall s [\text{numerous}(s) \rightarrow s \in {}^*\lambda s' \begin{pmatrix} \text{numerous}(s') \land \\ \text{Atom}(\text{holder}(s')) \end{pmatrix}]$ (Every state of being numereus consists of one or more states of being numerous whose holders are atoms.)
- (36) a. All the safari participants saw thirty zebras. *cumulative
 b. All the safari participants saw zebras. √cumulative
- (37) Failing presupposition: $SR_{agent, Atom}(\llbracket see thirty zebras \rrbracket)$ (Every see-thirty-zebras event consists of subevents whose agents are atoms and in each of which thirty zebras are seen.)
- (38) Satisfied presupposition: $SR_{agent, Atom}(\llbracket see zebras \rrbracket)$ (Every event in which at least one zebra is seen consists of subevents whose agents are atoms and in each of which at least one zebra is seen.)
- (39) atelic: telic::: mass/plural: count::: distributive: collective

For more information

Lucas Champollion (2015), "Stratified reference: the common core of distributivity, aspect and measurement" (target article). *Theoretical Linguistics*, 41(3-4): 109-149. doi. org/10.1515/tl-2015-0008

Lucas Champollion (2015), "Refining stratified reference" (replies to commentaries). *Theoretical Linguistics*, 41(3-4): 223-240. doi.org/10.1515/tl-2015-0015

Lucas Champollion, "Parts of a whole: Distributivity as a bridge between aspect and measurement." To appear in March 2017 at Oxford University Press.