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Abstract. We extend symbolic model checking for Dynamic Epistemic
Logic (DEL) with factual change. Our transformers provide a compact
representation of action models with pre- and postconditions, for both S5
and the general case. The method can be implemented using binary deci-
sion diagrams and we expect it to improve model checking performance.
As an example we give a symbolic representation of the Sally-Anne false
belief task.
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1 Introduction

Symbolic representation is a solution to the state explosion problem in model
checking. The idea is to not store models explicitly in memory, but to find more
compact representations which still allow the evaluation of formulas. In [3] it
was shown that S5 Kripke models for Dynamic Epistemic Logic (DEL) can be
encoded symbolically using knowledge structures. They are of the form (V, θ,O)
where V is a set of atomic propositions called vocabulary, θ is a boolean formula
called state law and Oi ⊆ V are observational variables for each agent. Notably,
this symbolic representation preserves the truth of all DEL formulas, including
higher-order knowledge (see Section 3 below).

The framework was generalized in [4] in two ways: From equivalences to
arbitrary relations and from announcements to action models. The latter can be
represented by knowledge transformers of the form (V +, θ+, O+). Analogous to
the product update on Kripke models [1], applying a transformer to a structure
yields a new structure. However, knowledge transformers only change what agents
know and not what is the case — they do not provide a symbolic equivalent of
postconditions for factual change as studied in [5].

In this paper we combine the two generalizations and add the missing com-
ponents to treat factual change. The result are belief transformers with factual
change which for simplicity we will just call transformers.

Possible worlds in a Kripke model get their meaning but not their identity
via a valuation function. In particular we can assign the same atomic truths to
different possible worlds. In contrast, all states of a knowledge structure satisfy
different atomic propositions and can thus be identified with their valuation. This
is what makes structures symbolic and efficient to implement, but it complicates
the idea of changing facts, as the following minimal example shows.



Example 1. Consider a coin lying on a table with heads up: p is true and this is
common knowledge. Suppose we then toss it randomly and hide the result from
agent a but reveal it to agent b. Figure 1 shows a Kripke model of this update.
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Fig. 1. Factual change on Kripke models.

It is easy to find the following structures that are equivalent to the initial
and the resulting model, but how can we symbolically describe the update which
transforms one into the other?

(V = {p}, θ = p, Oa = {p}, Ob = {p})
× ???
= (V = {p}, θ = >, Oa = ∅ , Ob = {p})

The name of a resulting world (w, a1) makes clear that it “comes from” w.
But a state like ∅ does not reveal its history or any relation to {p}. For purely
epistemic actions this is not a problem — we only add propositions from V +

to the state to distinguish different epistemic events. But for factual change
propositions from V have to be modified and we need a way to remove them
from states.

Our solution is to copy propositions: We store the old value of p in a fresh
variable p◦. Then we rewrite the state law and observations using substitutions.

We proceed as follows. Sections 2 and 3 summarize the relevant parts of [4],
generalized to belief transformers. We then add factual change in Section 4
and show that transformers are equivalent to action models in Section 5. The
Sally-Anne task illustrates our framework in Section 6 and we finish with further
questions in Section 7.

Definition 1 (Languages and Notation). We fix a finite set of agents I
denoted by i, j, etc. and use the letters V or X for sets of atomic propositional
variables denoted by p, q, etc.

For any set of propositions X we write LB(X) for the boolean language given
by the BNF ϕ ::= p | ¬ϕ | ϕ∧ϕ where p ∈ X. Similarly, let L(X) be the epistemic
language over X given by ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �iϕ where i ∈ I.



Primes and circles denote fresh variables, for example p′ and p◦. For sets of
variables let X ′ := {x′ | x ∈ X} and X◦ := {x◦ | x ∈ X}. We also extend this
notation to formulas recursively, for example (�ip ∧ q)′ = (�ip

′ ∧ q′).
We write [p/ψ]ϕ for the result of substituting ψ for p in ϕ. Given two sets

of the same size A and B of atomic propositions, and implicitly assuming an
enumeration A = {a1, . . . , ak} and B = {b1, . . . , bk} we write [B/A]ϕ for the
result of substituting ai for bi in ϕ in parallel for all i.

A boolean assignment is identified with its set of true propositional variables
and we write � for the standard satisfaction relation. Boolean quantification
is used as follows: ∀pϕ := [p/>]ϕ ∧ [p/⊥]ϕ. For any A = {p1, . . . , pn}, let
∀Aϕ := ∀p1∀p2 . . . ∀pnϕ. To abbreviate that a specific subset of propositions is
true, let A v B :=

∧
A ∧

∧
{¬p | p ∈ B \A}.

Definition 1 describes operations on boolean formulas which might not be
efficient in practice. In any actual implementation of our methods those should
be replaced with operations on boolean functions represented as Binary Decision
Diagrams (BDDs) [7]. For example, boolean quantification should not be imple-
mented as an abbreviation but can instead be done efficiently by eliminating
quantified variables from the BDD.

2 Kripke Models and Action Models

We quickly state the standard definitions for Kripke semantics of DEL. For a
general introduction see [9] and for details on factual change see [5].

Definition 2. A Kripke model for V is a tupleM = (W,R, π) where W is the
set of worlds, Ri ⊆ W ×W is a relation for each i and π : W → P(V ) is a
valuation function. A pointed Kripke model is a pair (M, w) where w ∈W .

We interpret L(V ) on pointed Kripke models as follows.

1. (M, w) � p iff p ∈ π(w)
2. (M, w) � ¬ϕ iff not (M, w) � ϕ
3. (M, w) � ϕ ∧ ψ iff (M, w) � ϕ and (M, w) � ψ
4. (M, w) � �iϕ iff for all v ∈W : If wRiv then (M, v) � ϕ

The following definition describes action models and how they can be applied
to Kripke models. Our definition of postconditions differs from the standard
in [5] because we only allow boolean formulas. This however does not change the
expressivity [10].

Definition 3. An action model is a tuple A = (A,R, pre, post) where A is a
set of atomic events, Ri ⊆ A × A a relation for each i, pre : A → L(V ) is a
precondition function and post : A× V → LB(V ) a postcondition function.

The product update is defined byM×A := (Wnew,Rnew
i , πnew) where

– Wnew := {(w, a) ∈W ×A | M, w � pre(a)}
– Rnew

i := {((w, a), (v, b)) | Riwv and Riab}
– πnew((w, a)) := {p ∈ V | M, w � posta(p)}

An action is a pair (A, a) where a ∈ A.



3 Belief Structures and Belief Transformers

We now present the definitions of belief structures and belief transformers. The key
idea is that instead of explicitly listing worlds we use a symbolic representation:
The set of worlds and the valuation function are replaced by a vocabulary and a
boolean formula called the state law. The set of states is then implicitly given as
all boolean assignments that satisfy the state law, i.e. a subset of the powerset
of the vocabulary. Moreover, also the epistemic relations can be encoded using
boolean formulas and the goal is to interpret the language on the resulting
structures without ever computing or listing the full set of states. For more
details and proofs, we refer the reader to [4].

Definition 4. A belief structure is a tuple F = (V, θ,Ω) where V is a finite
set of atomic propositions called vocabulary, θ ∈ LB(V ) is the state law and
Ωi ∈ LB(V ∪ V ′) are called observations. Any s ⊆ V such that s � θ is called a
state of F . A pair (F , s) where s is a state of F is called a scene.

We interpret L(V ) on scenes as follows.

1. (F , s) � p iff s � p.
2. (F , s) � ¬ϕ iff not (F , s) � ϕ
3. (F , s) � ϕ ∧ ψ iff (F , s) � ϕ and (F , s) � ψ
4. (F , s) � �iϕ iff for all t ⊆ V : If t � θ and (s ∪ t′) � Ωi then (F , t) � ϕ.

We write (F , s) ≡V (F ′, s′) iff these two scenes agree on all formulas of L(V ).

An interesting property of belief structures is that on a given structure all
epistemic formulas have boolean equivalents. The following translation reduces
model checking to boolean operations which is not possible on Kripke models.

Definition 5. For any belief structure F = (V, θ,Ω) and any formula ϕ ∈ L(V )
we define its local boolean translation ‖ϕ‖F as follows.

1. For any primitive formula, let ‖p‖F := p.
2. For negation, let ‖¬ψ‖F := ¬‖ψ‖F .
3. For conjunction, let ‖ψ1 ∧ ψ2‖F := ‖ψ1‖F ∧ ‖ψ2‖F .
4. For belief, let ‖�iψ‖F := ∀V ′(θ′ → (Ωi → (‖ϕ‖F )′))

Theorem 1 (from [4]). Definition 5 preserves and reflects truth. That is, for
any formula ϕ and any scene (F , s) we have that (F , s) � ϕ iff s � ‖ϕ‖F .

The following definition was only hinted at in [4]. Belief transformers are like
knowledge transformers, but instead of observed propositions O+

i we use boolean
formulas Ω+

i to encode arbitrary relations on P(V +).

Definition 6. A belief transformer for V is a tuple X = (V +, θ+, Ω+) where
V + is a set of atomic propositions such that V ∩ V + = ∅, θ+ ∈ L(V ∪ V +) is
a possibly epistemic formula and Ω+

i ∈ LB(V ∪ V +) is a boolean formula for
each i ∈ I. A belief event is a belief transformer together with a subset x ⊆ V +,
written as (X , x).



The belief transformation of a belief structure F = (V, θ,Ω) with X is defined
by F × X := (V ∪ V +, θ ∧ ||θ+||F , {Ωi ∧Ω+

i }i∈I). Given a scene (F , s) and a
belief event (X , x), let (F , s)× (X , x) := (F × X , s ∪ x).

The resulting observations are boolean formulas over the new double vocab-
ulary (V ∪ V ′) ∪ (V + ∪ V +′) = (V ∪ V +) ∪ (V ∪ V +)′, describing a relation
between the new states which are subsets of V ∪ V +.

4 Belief Transformers with Factual Change

We now define transformation with factual change, adding the components V−
and θ−. Note that the belief transformers without factual change as discussed in
the previous section are exactly those transformers where V− = ∅.

Definition 7. A transformer for V is a tuple X = (V +, θ+, V−, θ−, Ω
+) where

– V + is a set of fresh atomic propositions such that V ∩ V + = ∅,
– θ+ is a possibly epistemic formula from L(V ∪ V +),
– V− ⊆ V is the modified subset of the original vocabulary,
– θ− : V− → LB(V ∪ V +) maps modified propositions to boolean formulas,
– Ω+

i ∈ LB(V
+ ∪ V +′) are boolean formulas for each i ∈ I.

To transform F = (V, θ,Ωi) with X , let F × X := (V new, θnew, Ωnew
i ) where

1. V new := V ∪ V + ∪ V ◦−
2. θnew :=

[
V−/V

◦
−
]
(θ ∧ ‖θ+‖F ) ∧

∧
q∈V −

(
q ↔

[
V−/V

◦
−
]
(θ−(q))

)
3. Ωnew

i :=
([
V−/V

◦
−
] [
(V−)

′/(V ◦−)
′]Ωi

)
∧Ω+

i

An event is a pair (X , x) where x ⊆ V +. Given (F , s) and (X , x), let (F , s)×
(X , x) := (F × X , snew) where the new actual state is snew := (s \ V−) ∪
(s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)}.

To explain this definition, let us consider the components one by one.
First, the new vocabulary contains V ◦− = {p◦ | p ∈ V−}. These are fresh copies

of the modified subset. We use them to keep track of the old valuation.
Second, the new state law: A state in the resulting structure needs to satisfy

the old state law and the event law encoding the preconditions. For modified
propositions the old values have to be used, hence we apply a substitution to
both laws in the left conjunct. Modified propositions are then overwritten in
the right conjunct, using θ− which encodes postconditions. As in Definition 3,
postconditions are evaluated in the old model, hence we also substitute here.

Third, for the new observations we replace modified variables by their copies.
Two substitutions are needed because Ωnew

i is in a double vocabulary. Old
observations induce new ones via the state law. For example, if q was flipped
publicly, then q ↔ ¬q◦ is part of the new state law and observing whether q
is equivalent to observing whether ¬q◦, i.e. having observed q in the original
structure. In the simpler S5 setting we would use Onew

i :=
([
V−/V

◦
−
]
Oi

)
∪O+

i .



Finally, the new actual state snew is the union of, in this order: propositions
in the old state that have not been modified (s \ V−), copies of the modified
propositions that were in the old state (s ∩ V−)◦, those propositions labeling the
actual event x and the modified propositions whose precondition was true in the
old state {p ∈ V− | s ∪ x � θ−(p)}.

Example 2. We can now model the coin flip from Example 1 as follows. Because
we use the more general belief (instead of knowledge) structures, the initial
structure now has boolean formulas Ωi instead of observational variables Oi:

(V = {p}, θ = p, Ωa = p↔ p′, Ωb = p↔ p′)

The following transformer models the coin flip visible to b but not to a:

(V + = {q}, θ+ = >, V− = {p}, θ−(p) := q, Ω+
a = >, Ω+

b = q ↔ q′)

The result of applying the latter to the former is this:

(V = {p, q, p◦}, θ = p◦ ∧ (p↔ q), Ωa = p◦ ↔ p◦′, Ωb = (p◦ ↔ p◦′) ∧ (q ↔ q′))

Example 3. A publicly observable change p := ϕ for a propositional formula ϕ is
modeled by:

(V + = ∅, θ+ = >, V− = {p}, θ−(p) := ϕ, Ω+
i = >)

DEL does not have temporal operators and agents never know the past
explicitly. Hence the old valuation is often irrelevant and the product update
on Kripke models does this “garbage collection” better than our transformation.
But we can eliminate propositions outside the original V using the following
Lemma. A more thorough analysis of minimizing knowledge structures will be
future work.

Lemma 1. Suppose F uses the vocabulary V ∪ {p} and p 6∈ V is determined
by the state law (i.e. θ → p or θ → ¬p is a tautology). Then we can remove p
from the state law and observational BDDs to get a new structure F ′ using the
vocabulary V such that (F , s) ≡V (F ′, s \ {p}).

Example 4. The result from Example 2 is ≡{p,q} equivalent to:

(V = {p, q}, θ = p↔ q, Ωa = >, Ωb = q ↔ q′)

5 Equivalence and Expressiveness

We now show that transformers describe exactly the same class of updates as
action models. The main ingredients for the proof are the following Lemma and
two Definitions of how to go from transformers to action models and back.

Lemma 2 (from [4]). Suppose we have a belief structure F = (V, θ,Ω), a
finite Kripke model M = (W,π,R) for the vocabulary X ⊆ V and a function
g :W → P(V ) such that



C1 For all w1, w2 ∈W and i ∈ I we have that g(w1)(g(w2)
′) � Ωi iff w1Riw2.

C2 For all w ∈W and p ∈ X, we have that p ∈ g(w) iff p ∈ π(w).
C3 For every s ⊆ V , s is a state of F iff s = g(w) for some w ∈W .

Then, for every L(X)-formula ϕ we have (F , g(w)) � ϕ iff (M, w) � ϕ.

Definition 8 (Act). Given an event (X = (V +, θ+, V−, θ−, Ω
+), x), define an

action (Act(X ) := (A, pre, post, R), a := x) by

– A := P(V +)
– pre(a) := [a/>] [(V + \ a)/⊥] θ+

– posta(p) :=

{
[a/>] [(V + \ a)/⊥] (θ−(p)) if p ∈ V−
p otherwise

– Ri := {(a, b) | a ∪ (b′) � Ω+
i }

Definition 9 (Trf). Consider an action (A = (A, pre, post, R), a0). Let n :=
ceil(log2 |A|) and ` : A→ P({q1, . . . , qn}) be an injective labeling function using
fresh atomic variables qk. Then let (Trf(A) := (V +, θ+, V−, θ−, Ω

+), x := `(a0))
be the event defined by

– V + := {q1, . . . , qn}
– θ+ :=

∨
a∈A (pre(a) ∧ `(a) v V ◦)

– V− := {p ∈ V | ∃a : posta(p) 6= p}
– θ−(p) :=

∨
a∈A (`(a) v V + ∧ posta(p))

– Ω+
i :=

∨
(a,b)∈Ri

(a v V + ∧ (b v V +)′)

Besides these translations for the dynamic parts, we also use the translations
M(·) and F(·) from structures to models and vice versa, as given in Definitions
18 and 19 of [4]. Now everything is in place to state and prove our main result.
The following generalizes Theorem 4 in [4].

Theorem 2. (i) Definition 8 is truthful: For any scene (F , s), any event (X , x)
and any formula ϕ over the vocabulary of F we have:

(F , s)× (X , x) � ϕ ⇐⇒ (M(F), s)× (Act(X ), x) � ϕ

(ii) Definition 9 is truthful: For any pointed Kripke model (M, w), any action
(A, a) and any formula ϕ over the vocabulary ofM we have:

(M×A, (w, a)) � ϕ ⇐⇒ (F(M), gM(w))× (Trf(A), `(a)) � ϕ

where gM is from F(M) in Definition 19 of [4] and Trf(A) and ` are from
Definition 9 above.

Proof. By Lemma 2. We first need appropriate functions g.
For part (i), g needs to map worlds of M(F) × Act(X ), i.e. pairs (s, x) ∈

P(V )× P(V +) to states of F × X , i.e. subsets of V ∪ V + ∪ V ◦−. Let g(s, x) :=
(s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)} which is exactly snew from
Definition 7 above. We now prove C1 to C3 from Lemma 2.



For C1, take any two worlds (s, x) and (t, y). We need to show g(s, x)(g(t, y))′ �
Ωnew

i iff Rnew
i (s, x)(t, y). For this, note the following equivalences. We have

g(s, x)(g(t, y))′ � Ωnew
i iff

(s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)}
∪ ((t \ V−) ∪ (t ∩ V−)◦ ∪ y ∪ {p ∈ V− | t ∪ y � θ−(p)})′
�
[
V−/V

◦
−
] [
(V−)

′/(V ◦−)
′]Ωi ∧Ω+

i

Here V− and V ′− do not occur in the formula, as old epistemic relations do not
depend on new values of modified propositions. Hence we can drop the subsets
of V− and V ′− to obtain the equivalent condition

(s\V−)∪(s ∩ V−)◦∪x∪(t\V−)′∪(t◦∩V ◦−)′∪y′ �
[
V−/V

◦
−
] [
(V−)

′/(V ◦−)
′]Ωi∧Ω+

i

in which we can split both sides into separate vocabularies:

(s\V−)∪(s ∩ V−)◦∪(t\V−)′∪(t◦∩V ◦−)′ �
[
V−/V

◦
−
] [

(V−)
′/(V ◦−)

′]Ωi and x∪y′ � Ω+
i

Now undo the ◦-substitution on both sides in the first conjunct to see that it is
equivalent to s∪t′ � Ωi. Hence the whole condition is equivalent toRist and Rixy
which is exactly Rnew

i (s, x)(t, y) by Definition ofM(·) and Definition 8.
To show C2, take any (s, x) and any p ∈ V . We have to show that p ∈ g(s, x)

iff p ∈ πnew(s, x) = {p ∈ V | M, s � postx(p)}. There are two cases. First, if
p /∈ V−, then postx(p) = p by Definition 8 and we directly have p ∈ g(s, x) iff
p ∈ s iff M, s � p iff p ∈ πnew(s, x). Second, if p ∈ V−, then p ∈ g(s, x) iff
s ∪ x � θ−(p) by definition of g and postx(p) = [x/>] [(V + \ x)/⊥] θ−(p) by
Definition 8. Hence we have a chain of equivalences: p ∈ g(s, x) iff s ∪ x �
θ−(p) iff s � [x/>] [(V + \ x)/⊥] θ−(p) iff M, s � [x/>] [(V + \ x)/⊥] θ−(p) iff
p ∈ πnew(s, x).

For C3, take any snew ⊆ V ∪ V + ∪ V ◦−. We want to show that snew � θnew iff
there is an (s, x) such that g(s, x) = snew.

For left-to-right, suppose snew � θnew, i.e. snew �
[
V−/V

◦
−
]
(θ ∧ ‖θ+‖F ) ∧∧

q∈V −

(
q ↔

[
V−/V

◦
−
]
(θ−(q))

)
. Now first, let sold := (snew ∩ \V−) ∪ {p ∈ V− |

p◦ ∈ snew}. We then have sold � θ, i.e. sold is a state of F and thus by the
definition ofM(·) also a world ofM(F). Second, let x := snew ∩ V + and note
that s ∪ x � ‖θ+‖F . It can now be checked that g(s, x) = snew.

For right-to-left, suppose we have an (s, x) such that g(s, x) = snew. Then
we want to show (s \ V−) ∪ (s ∩ V−)◦ ∪ x ∪ {p ∈ V− | s ∪ x � θ−(p)} �[
V−/V

◦
−
]
(θ ∧ ‖θ+‖F ) ∧

∧
q∈V −

(
q ↔

[
V−/V

◦
−
]
(θ−(q))

)
which indeed follows

from s � θ and Definition 8.

For part (ii), g should map worlds ofM×A to states of F(M)×Trf(A). Again
we use snew, but s and x are given by propositional encodings gM(w) and `(a). Let
g(w, a) := (gM(w)\V−)∪(gM(w) ∩ V−)◦∪`(a)∪{p ∈ V− | gM(w)∪`(a) � θ−(p)}.
We leave checking C1 to C3 as an exercise to the reader — the proofs are very
similar to those in part (i). ut



6 Symbolic Sally-Anne

The Sally-Anne false belief task is a famous example used to illustrate and test
for a theory of mind. The basic version goes as follows (adapted from [2]):

Sally has a basket, Anne has a box. Sally also has a marble and puts it
in her basket. Then Sally goes out for a walk. Anne moves the marble
from the basket into the Box. Now Sally comes back and wants to get
her marble. Where will she look for it?

To answer this, one needs to realize that Sally did not observe that the marble
was moved and will thus look for it in the basket. We now translate the first DEL
modeling of this story from [6] to our framework. This choice is also motivated by
a recent interest in the complexity of theory of mind [12,13] where our symbolic
representation might provide a new perspective. For simplicity we adopt the
naive modeling given in [6], leaving it as future work to also adopt the refinement
with edge-conditions and other improvements of the model.

We use the vocabulary V = {p, t} where p means that Sally is in the room
and t that the marble is in the basket. In the initial scene Sally is in the room,
the marble is not in the basket and both of this is common knowledge:

(F0, s0) = ((V = {p, t}, θ = (p ∧ ¬t), ΩS = >, ΩA = >), {p})

The sequence of events is:

X1: Sally puts the marble in the basket: ((∅,>, {t}, θ−(t) = >,>,>),∅).
X2: Sally leaves: ((∅,>, {p}, θ−(p) = ⊥,>,>),∅).
X3: Anne puts the marble in the box, not observed by Sally:

(({q},>, {t}, θ−(t) = (¬q → t) ∧ (q → ⊥),¬q′, q ↔ q′), {q}).
X4: Sally comes back: ((∅,>, {p}, θ−(p) = >,>,>),∅).

We calculate the result in Figure 2, using Lemma 1 to remove superfluous
variables. Note that all operations are boolean. Finally, we can check that in the
last scene Sally believes the marble is in the basket:

{p, q} � �St
⇐⇒ {p, q} � ∀V ′(θ′ → (ΩS → t′))
⇐⇒ {p, q} � ∀{p′, t′, q′}((t′ ↔ ¬q′) ∧ p′ → (¬q′ → t′))
⇐⇒ {p, q} � >

7 Related and Future Work

We generalized knowledge transformers from [4] to belief transformers with
factual change. The result is a new symbolic representation of action models with
postconditions that can be implemented using binary decision diagrams [7].



(({p, t}, (p ∧ ¬t),>,>), p) F0

× ((∅,>, {t}, θ−(t) = >,>,>),∅) X1

= (({p, t, t◦}, (p ∧ ¬t◦) ∧ t,>,>), {p, t})

× ((∅,>, {p}, θ−(p) = ⊥,>,>),∅) X2

= (({p, t, t◦, p◦}, (p◦ ∧ ¬t◦) ∧ t ∧ ¬p,>,>), {t, p◦})
≡V (({p, t}, t ∧ ¬p,>,>), {t})

× (({q},>, {t}, θ−(t) = (¬q → t) ∧ (q → ⊥),¬q′, q ↔ q′), {q}) X3

= (({p, t, q, t◦}, t◦ ∧ ¬p ∧ (t↔ ((¬q → t◦) ∧ (q → ⊥))),¬q′, q ↔ q′), {q})
= (({p, t, q, t◦}, t◦ ∧ ¬p ∧ (t↔ ¬q),¬q′, q ↔ q′), {q})
≡V (({p, t, q},¬p ∧ (t↔ ¬q),¬q′, q ↔ q′), {q})

× ((∅,>, {p}, θ−(p) = >,>,>),∅) X4

= (({p, t, q, p◦},¬p◦ ∧ (t↔ ¬q) ∧ p,¬q′, q ↔ q′), {p, q})
≡V (({p, t, q}, (t↔ ¬q) ∧ p,¬q′, q ↔ q′), {p, q})

Fig. 2. Sally-Anne on belief structures and transformers.

As mentioned above, restricting postconditions to boolean formulas does
not limit the expressivity. The authors of [10] in fact prove the stronger result
that postconditions can be restricted to > and ⊥. Hence one can also model
postconditions as functions of the type A→ P(V ) as done in [6]. We leave it as
future work to tune the definition of transformers in a similar way.

An alternative “succinct” representation for Kripke models and action models
was recently developed in [8]. Succinct models also describe sets of worlds with
boolean formulas, but instead of observational variables or boolean formulas over
a double vocabulary they use mental programs to encode accessibility relations.
Notably, model checking DEL is still in PSPACE when models and actions are
represented succinctly. No complexity is known for our structures and transformers
so far, but we expect it to be the same as for succinct models and actions.

Finally, the presented ideas are of course meant to be implemented. A natural
next step therefore is to extend SMCDEL [11], the implementation of [4], with
the presented transformers, working towards a symbolic model checker covering
the whole Logic of Communication and Change from [5]. This work has been
started and experimental modules including the Sally-Anne example are now
available at https://github.com/jrclogic/SMCDEL.

Additionally, an implementation of [8] would be interesting to compare the
performance of both approaches. Benchmark problems can be taken from both
the DEL and the cognition literature, see for example [13].

Acknowledgements. Many thanks to Fernando R. Velázquez Quesada, Jan
van Eijck and the anonymous reviewers for helpful comments and suggestions.
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