- b available
"fer%’ & avallablllty distributed

&y serlallzable“::;':’;mee

napshot about

9 ppea should B ise
6""% ‘s oalﬂfstle'r hIS'I'OI'y °°°°° b

***** - rowde
theo'em ” va || ' rea eeeee
monotonic conshamt
effect chang equivalent print nmork

vactical:

o always

flghfprog'am] caldsaiconcuﬂ'el‘l'l' weaker

Y

COI\SIS

Il‘lVOCﬂfIOﬂde I 5'-“"

variable Visile u

completion W‘I'I 'e*’ id

1eNnC

rules . . Video

Yrartition

I'OCQSS

databases while w 0 ‘ - ""e |St f,',mutltmle
opnsognornatl on s olr!r‘esctr?gfe

mlmearlzable ol

sequential message point ,‘o

bounds

David Golden ‘ mongoDB DCBPW 2016

What is a
distributed system?

Data processing spread
over time & space

Node B
(secondary)

RO

~

RW

‘Replica Set’

Node A
(primary)

/

‘ mongoDB

2\

Node C
(secondary)

DB

RW

memcached

RW

memcached

Node

etcd

Why use a
distributed system?

Scale

/ - |
i

Performance

~\7
| -
v >
lﬁ |
-r v a APV T ~
_ g .V

Redundancy

How do you break a
distributed system?

S s, S, s, S S
m
- "’m‘w~9m‘\ﬁ ‘* l F
- . ' -
'KPC&?_ mm»o 1 .\ '“““""l

R SR -_————-
- n~.,.*")' I~Wh—“\m -

. Ww%f“‘” le‘“ﬁ‘ P - NS

Crash

Packet 0SS

~A(C I

Garbage collection

~ A A~

P _—

Process swapped out

Update... DB memcached

>/?CI \\

Update... DB memcached

Update... DB memcached

Read.. DB memcached

How can that go wrong!?

memcached

bB memcached

DB memcached

DB memcached

DB memcached

't

memcached

DB + memcached Is not
a 'good system

What makes a good
distributed system?

CAP Theorem

Consistency
Availability
Partition tolerance

Pick two!

Consistency

Appears to be a single-copy of the data to an
outside observer.

Weaker models exist, e.g.‘'eventual consistency'.

Availability

Node fallures don't prevent survivors from
operating.

Partrition tolerance

Partition: network can lose arpitrarily many
messages from one node to another

lolerant: other properties remain true

Can't avoid partitions!

CP or AP only

CAP = PAC/ELC

pac/elc system design

if (partition) {
pick(“availability”, “consistency’)

)

else {
pick(““low latency”, ““consistency’)

)

Still simplistic

Reads Vs writes

. mongoDB

Majority-side of a partition
Can write (appears consistent)
Canread (avallable)

Minority-side of a partition
Can’t write (not available)
Canread (avallable — but stale)

‘Practical
Consistency’

Do | know when a write Is committed!

How do | read only committed and/or
current data!

I hinking about writes..

Durabllity
Convergence
Crror recovery

Do we know when
writes are durable!

Node A Node B Node C
(primary) (secondary) (secondary)

‘ mongoDB

,Aﬁ ~

Write goes to primary

Node A Node B Node C ‘

(pr(i)mary) (seczndary) (secondary) mongODB
------------------ > 4

,A B NN i

Replicates to majority = committec

Node A
(primary)

I—

A

T

Node B Node C

(secondary)

. A

(secondary)

n B

Partrtion se

Darates

‘ mongoDB

drimary

|
|

Node A Node B Node C .
(pr(i)mary) : (seczndary) (secondary) mongODB
B —x: A

Write to primary can't replicate
But do we find out!

. mongoDB

write concern

MongoDB->connect($url,
{w= 1]
),

MongoDB->connect($url,
{ w=> ‘majority’ }

);

Node A Node B Node C
(primary) (secondary) (secondary)

. mongoDB
A

fw = 1}

OK!

Node A Node B Node C
(primary) (secondary) (secondary)

. mongoDB

A

T ee——

{w => ‘majority’}

Node A Node B Node C
(primary) (secondary) (secondary)

— R > A
A

— ——— ~A

. mongoDB

~§
~§
~

Node A Node B Node C
(primary) (secondary) (secondary)

. mongoDB

A -

OK!

How WIIl the system
converge on recovery!

Node B Node C .
: (secondary) (primary) mongODB

_ . _

0
— 0 -

1
B s A

0 e

1

0

Old primary steps down
New primary electec

N

Node A Node B Node C .
(secgndary) : (seczndary) (primary) mongODB
| B E - — O

New writes occur and replicate

Node A Node B Node C
(secondary) (secondary) (primary)

‘ mongoDB

——

B a
. = ¢
xt - C —

Partrition heals
Returning node rolls back history

Node A Node B Node C
(secondary) (secondary) (primary)

. mongoDB

Returning node catches up with primary

e Rollback

e Conflict records

e Conflict-free replicated data type (CRDT)
(e.g."add to set”)

VWhat do we do with a
write error!

Node A Node B Node C
(primary) (secondary) (secondary)

. mongoDB

A

|

|
|

D

|
|

S

{w => ‘majority’}

Write to primary can't replicate

@)
14
A

Node A Node B Node C .
(pr(i)mary) : (seczndary) (secondary) mongODB

Majorrty write concern will timeout with an error

Retry?

U Ewrorl lsnore!
g

Answers are specific to
your application!

I hinking about reads...

Recency
Durability
Latency

Do we care If we read
the latest write!

Do we care If data we
read rolls back?

Irade recency for
auraoilirty

Node A Node B Node C .

(pr(i)mary) : (seczndary) (sec(:)ndary) Imo ngODB
B —x: A

‘ Write to primary can't replicate

N\

¥
A

Node A Node B Node C
(primary) (secondary) (secondary)

. mongoDB

A
A A

S
\

Dirty read from partitioned primary

. mongoDB

read concern (3.2+)

MongoDB->connect($url,
{ read_concern_level =» ‘local’ }

);

MongoDB->connect($url,
{ read_concern_level => ‘majority’ }

);

Node A Node B Node C “
(pr(i)mary) (secanary) (secondary) mongODB
A\ mETmmmmEEsEEEssssssss = B
N A

{read_concern_level => ‘majority’}

Without partition, majority reac
concern lags replication

Irade recency for
atency

Round-trip time

Node A Y "WEI Node B USEAST Node C
(primary) (secondary) (secondary)

A - A
A A A

A
Y. 3 E
100ms .. 00ms ™. 10ms
.... i
«
s

_/
N \//>

L

mongoDB

RT T for each

C

ata center

. mongoDB

read preference

MongoDB->connect($url,
{ read_pref_mode => ‘primary’ }

);

MongoDB->connect($url,
{ read_pref_mode => ‘nearest’ |}

);

NodeA W Node B USEAT Node C
(primary) (secondary) (secondary)

‘ mongoDB

_9 ~ ,A‘

Primary write
starts replicating

NodeA W Node B USEAT Node C
(primary) (secondary) (secondary)

‘ mongoDB

Meanwhile,
read from
nearest noge

A _/
\ !

Still another‘gotcha..

Partition detection race!

Node A Node B Node C
(‘lame-duck’ primary) (new primary) (secondary)

. mongoDB

A

B

+ A
7A* .

Hasn't stepped down yet

Just elected primary

Doesn't know Has discovered
about new primary new primary

A A

Node A Node B Node C
(‘lame-duck’ primary) (new primary) (secondary)

‘ mongoDB

A

B T——

- :
B / T

Hasn't stepped down yet

Wrrtes can commit
Soecrit ko Via hew primary
about new primary
\/?g\

N\

A

Node A Node B Node C
(‘lame-duck’ primary) (new primary) (secondary)

. mongoDB

A

T ee——

' |
m |

Lame-auck’ primary
returns olc

committed data

VWhat If this isn't OK!?

‘Quorum read

Read-via-write

. mongoDB
find_one_and_update (CAS*)

$mc = MongoDB->connect($url,
{ w=> ‘majority’ }
) ;

$doc = $coll->find_one_and_update(
{ _id => $id },
{ “$inc’ => { _dummy => 1 } },
) ;

Take aways...

CAP 1s simplistic

Reality 1s complex

Neeads are
application specific

VWhen writing, consider...

Durability
Convergence
Crror recovery

VWhen reading, consider...

Recency vs durapllity
Recency vs latency
Nuclear option

Questions!

Emall; david@mongodb.com
Twitter/IRC: @xdg

Photo credits:

9:00 AM: Mitch Martinez https://www.youtube.com/watch?v=5cDY ZXlcihc

Camel race: Jason Mrachina https:// www.flicknrcom/photos/w4nd3rl0st/59444877 1 3 by-nc-nd

Partition: Marc Venezia - Own work Picture taken during a personal trip in Middle-East, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.phplcurid=| 46953 |

Eric Brewer: By Vera de Kok - Own work, CC BY-SA 4.0, https//commons.wikimedia.org/w/index.php?
curid=39817816

Daniel Abadi: @daniel_abadi profile picture https://pbstwimg.com/profile_images/254073578/head? pg
Fireball: By Photo courtesy of National Nuclear Security Administration / Nevada Site Office - This image s
available from the National Nuclear Security Administration Nevada Site Office Photo Library under number
XX-34. Public Domain, https://commons.wikimedia.org/w/index.php?!curid= 190949

