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DEPENDENCY STRUCTURES OF DATA BASE RELATIONSHIPS*
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An axiomatic description of dependency structure

those families of dependencies "A determines B”

s in relationships is presented. The axioms specify
which can hold for some relationship. Families of

maximal dependencies, i.e., those where A is a minimal set of attributes determining the given B and

where B is the set of all attributes determined by A are also characterized axiomatically. The O-semi—

lattice of the B in maximal dependencies is shown to determine the dependency structure completely.

Families of subsets of attributes which can be the candidate keys of some relationship are completely

characterized. Some insight into recent work on use of boolean functions in data base decomposition

is provided.

1. INTRODUCTION

The concept of a relationship has been developed

into a powerful means for representing formatted

data at a logical level suitable for exchange bet—

ween information systems and for use in applications

programs [1,2,3]. The user of an information ma—

nagement system finds this tool very natural, for

he has long been accustomed to the presentation of

data in the form of tables. Any relationship,

though defined abstractly in terms of sets and

functions, can be concretely displayed as a table

consisting of lines, each one of which represents

an assignment of values to the attributes named in

the column headings (e.g. 'NAME','AGE','HEIGHT',

etc.). The data base administrator and the system

implementor find it easy to interact Wlth such a

logically transparent information structure. It

leaves them great freedom to choose economical data

and storage structures, depending upon the relative

frequency of access of various parts of the data

and the characteristics of the machines being used.

In this paper, we examine the mathematically pos—

sible families of dependencies of the form "A de—

termines B" which can hold in some relationship R.

"A determines B” means that, given a table of R and

the values assigned to the attributes of A in any

line or lines, it is possible to uniquely determine

the values of the attributes of B in these lines.

Our hope is that this examination will permit wor~

kers in the area of relational models of data to

use precise concepts and terminology to define and

manipulate dependencies involved when complex rela-

tionships are broken down into collections of sim—

pler relationships in various normal forms. Symp-

toms of a deficiency in this area are not hard to

find. E.F. Codd states in [3] that he finds it ne—

cessary to give numerous examples to explain and

motivate his normal forms and their many subtle ra—

mifications. The fact that it is necessary to use

examples of relationships to explain the nature of

a restriction on a relationship implies that we

need a means of describing the restrictions them-

selves. This can be accomplished by conceptually

separating the relationships existing at a particu—

lar moment of time from the possible classes of

dependency structures which are imposed upon those

relationships by the meanings of the attributes in

a given data base. In general, a restriction will

require that at least certain dependencies be pre—
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sent in a relationship at any time, although fortui—

tous or unimportant dependencies may exist too (as

for example in a one—line table, wherein given the

values of any attributes or none at all, we can de—

termine all attribute values).

After a brief introduction to the relational model

of data in section 2, and the definition of depen—

dency structure in section 3, we introduce in sec—

tion 4 a completely general axiomatic characteriza-

tion of full families of dependencies, which includes

all dependency structures holding for relationships

R. In order to justify the axioms by constructing

a relationship which actually has precisely the de—

pendencies of any axiomatically defined full family,

we must discuss "maximal" dependencies first, in

section 5. It is shown in section 6 that the sets

B belonging to maximal dependencies are closed under

intersection. A set of generators of these B (under

intersection) serves to construct the required rela—

tionship in section 7. We give a characterization

in section 8 of the possible structures for candi-

date keys of a relationship. In section 9 we apply

the results of the present paper to derive new and

simpler proofs of some theorems of Casey and Delobel

[5]. Section 10 contains some conclusions.

2. THE RELATIONAL MODEL OF DATA

Let a be any finite set. Its elements will be cal-

led attributes. (In some other contexts, it would

be more appropriate to refer to them as variables.)

With each attribute b we associate a set Db called

in data base terminology the domain of b. (This

choice of terminology is unfortunate, since D will

not be used as the domain of a function in the ma-

thematical sense.) We are interested in evaluations

of the attributes of a, which are functions

f: a a D ,

where D =

OLD,
and where for all b E a f(b) is

an elemen of D . We define a relationship over a

to be any finite set of such evaluations f. It is

not hard to see how these evaluations can be repre-

sented as lines in a table where each column is as-

sociated one-to—one with an element of a.

The difference between a relationship and the less

general concept of a relation is simply the (impli-

cit) choice of a
= {l,2,3,...,n} for the latter.

That is to say, in the case of a relation, whether

the attributes have names or not, there is an ore

dering of the attributes and their domains: D ,D ,

...,Dn. Then f6 D1 X ...
X Dn is just a finite
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sequence of values. The arbitrary imposition of an

ordering on all sets of attributes is an unnecessary
requirement from the theoretical point of View.

Furthermore, the use of relationships rather than
relations is of great practical value in that a

certain attribute can be referred to by_its name

(e.g. "HEIGHT”) rather than by its position in an

ordering of all attributes (e.g. column 3 in a

table). The latter would be difficult for the user

to remember if he were dealing with a data base

containing several relations with many attributes,
and would be subject to change whenever the data
base is restructured.

We do not need to discuss partially defined func—
tions 1‘ in this paper.

3. DEPENDENCY STRUCTURES

If a is a set of attributes, an ordered pair (A,B)
with A S a, B Ego will be referred to as a depen-
dency. .c = {(A,B)IA g a, B E on} is the set of all

dependencies over a. If R is a relationship, we

say that the dependency (A,B) holds in R iff for all

f1,f e R fllA=f2IA impliesf B=f2(B. (The
vertlcal bar denotes restriction of a function to

a subset of its domain. "Domain" here is in the
mathematical sense, i.e. a subset of a. We consider
two functions to be equal if they have the same

domain and have equal values at all points of the

domain.) We shall symbolize (A,B) holding in R by
A r B.

R

The dependency structure of the relationship R is
the family

<¥R={(A,B)IASa,BEa,A->RB}
We shall now proceed to describe these dependency
structures axiomatically by introducing the concept
of a full family of dependencies over a. The equi-
valence of these two concepts will be shown in sec—

tion 7.‘

4. FULL FAMILIES OF DEPENDENCIES

In order to define certain sets of dependencies,
we introduce a partial ordering 2 in the set 13 of
all dependencies over a as follows: for (A,B) E L’
and (A',B') E .C we define: (A,B) 2 (A',B') iff
A E A', B 2 B'. We might read this as "the depen—
dency (A,B) is at least as informative as the de—

pendency (A' ,B')".

With this structure .5 becomes a lattice [4] wherein
thel.u.b. of two elements (A,B) and (A',B') is

(A n A',B U B') and their g.l.b. is (A U A',B � B'L
We note this only in passing, since we shall not

make use of the lattice operations.
Definition: Let ’5' be a subset of 11, and let -* be
defined by: A -> B iff (A,B) 6?. Then ?will be
called a full family of dependencies over a if

(31) A->A,

(5‘2) if A->B and M then A-’C,
(373) if A—>B and (A,B)>(A',B') then A'rB',
(54) if A->B and A'->B' then A U A' a B U B',
where each condition is universally quantified
over all A,B,C,A',B' E on.

Theorem 1: The dependency structure of any rela—

tionship R is a full family of dependencies.
Proof: We must verify (1-1) to (3’4) when -> is

replaced by r
. This is very easy and is left to

the reader.D

The proof of the converse of Theorem 1, which states
that any full family of dependencies over on is the

dependency structure of some relationship R over on

with appropriately chosen domains, is postponed to

Theorem 5 of section 7. This will show that (3‘1)
to (?4) are sufficient to completely characterize
the dependency structures of relationships.

Exam 1e: Consider the family, for some fixed K E 0.,
?= i(A,B)IA 2 K or A 2 B}. The meaning of this is
that when A contains all the attributes in K, then
there is no restriction on B; indeed the attributes
in K determine all of the attributes in on; but if
A does not contain all attributes of K, then the de-

pendency (A,B) must be trivial, i.e. A 2 B. Showing
that I; is a full family of dependencies is left to

the reader.

The reader who believes at this point that the whole

question of dependency structures might really be
trivial is invited to construct an R with 7 = 3:
in the above example. (Two answers are obtainable
from section 8 by considering K as the sole candi—
date key of a dependency structure.)

5. MAXIMAL ELEMENTS OF FULL FAMILIES

In any partially ordered set, the maximal elements
are those for which there exists no greater element
in the set. In the case of a full family 9': with
the partial order >, (A,B) E 3 is maximal iff for
all (A',B') e 3’- (A',B') > (A,B) only if A'=A,B'=B.
Intuitively this means that (A,B) is maximal iff A
cannot be made smaller for the given B and B cannot

be made larger for the given A without going outside
the family 3‘ .

A

Let 3: denote the family of all maximal elements of
the full family 35‘. We shall usually use the sym-
bol an instead of f for simplicity. We introduce
the convenient notation A 7‘ B to mean (A,B) em .

Theorem 2: The family)?! of maximal elements of a

full family of dependencies 3: satisfies:

(M1) for all A Soc there exists (A',B') > (A,A)
such that A' 7‘ B',

(1(2) if A7‘B and A'7‘B' and (A,B) 2 (A',B')
then A=A' and B=B',

(M3) if MB and A'7‘B' and A'EB then B'EB.
Conversely, any subsetmof £ satisfying these
conditions is the set of maximal elements of exact—

ly one full family

’§= {(A,B)IB(A',B') 2 (A,B) such that A'fB'}

Proof: (1711) Starting from (A,A) E? (by? l),
we can climb up (2) in the finite set 3 until we

reach a maximal element (A',B') which is at least
as informative as (A,A).
(M2) : We can weaken A 7‘ B to A->B and use the
definition of (A',B') being a maximal element of?.
(M3) : (A',B') > (B,B') so B—* B' by (’33). This,
together with A -> B, gives A -> B' by (42). Hence

by (3’4) A —> B U B'. But (A,B) is maximal int-F,
so 8' E B.

To prove the converse we note first that the only
possible full family having”! as its set of maxi—
mal elements is the given in the statement of
the theorem by ($3) and by the fact that in any
finite set we can always climb up inside it from

any (A,B) to a maximal element.

Furthermore, M is the set of maximal elements of
the given 3" by (M2).

All that remains to be shown is that 3 is a full

family.
(3'1) is clear from (all).
(g 2) : Let A -* B, B -* C. Then by the definition

of F we can find elements of”! (A181)> (A,B)
and (B2,C ) > (B,C) which satisfy B 2 B 2 Bz,
allowing fhe conclusion C2S B1by him). Hence

(A1,Bl) 2 (A,C) and A -> c.

(3'- 3) is trivial.

(3‘4) : It suffices by (3'3) to consider only the
case A7 B, A' 7‘ B'.

Now for A U A' E on we apply (321) to get A" 7‘ B"
with A" E A U A' E B". Applying (M3) twice gives



582 Logic and Data Bases

B U B' E B" and hence the result, completing the

proof of the theorem.D

The maximal elements of a full family suffice to

characterize the family completely. Unfortunately,
the conditions (m1) to (“3) are still rather com—

plex and we still cannot get a good picture of what

the general full family looks like. The economy of

the representation is shown by taking the maximal

elements of the example given in the previous sec—

tion

�I=HKM}U{MJHAEmA�KL
We leave it up to the reader to check (#21) to

(M3)-

6. SATURATED SUBSETS OF ATTRIBUTES

In this section we prove a result which may seem at

first somewhat surprising, namely that the family

6 = {B|(A,B) am

is sufficient to characterize 3" and"! completely!
The elements of� will be termed saturated subsets

according to 3‘ (orM). Intuitively speaking,
they are sets of attributes which already contain

all attributes which they determine.

Theorem 3: Let 3'" be a full family of dependencies
over on and at its family of maximal elements. Let

b be defined as above. Then 18 is an rW-semilat—
tice containing 0: [4] , i.e. 5 satisfies

(61) a '58 ,

(52) if B16 (8 and 13265 then B1 0 32 e B .

Conversely if 6 is any family of subsets of a sa-

tisfying (£1) and (a 2) then there is exactly one

full family 3': whose maximal elements an determine
as above, and indeed

3': {(A,B) for all 8' ea (A g B' implies 135m}.

Proof:

(6 1) follows from (all) by taking A =
a.

(02) : Let A17 B1, A2 7‘ 32. By (m): A' r B'

such that A' E Bl f) 82 E 3'. But A' E E1 so by
(13) B' E Bl. Similarly B' E B2, so that Bl�B2=
B' e 8 .

To show the converse, we first leave it up to the

reader to show that the 3" defined above is indeed
a full family. Properties (bl) and (6 2) of0
are not even needed for this part!

A y maximal element (A,B) E 3 must be such that if
= {B'IAEB'} then B=rvl. Hence 3618 by

(61) and (8 2) and the finiteness of J . On the
other hand if B E b and we construct a maximal

dependency of 3’ A1 7‘ Bl with A1 E B E Bl by (331),
then certainly A1 E B and hence Bl E B by the defi—
nition of 3" . So B =

B1 and we see that 3: does

determine 5 via” .

In order to show that 3: is the only full family
determining the given 6 via”? , consider any 351
and its ml which also determine a . We show
first that 371 E 3: For any 8'6 a there is an

(A',B')� m1; and if (A,B)� 3‘1with A g B', we

have for an (A",B")� ml with (A",B") > (A,B) that
A" E B'. By (#13) B" S B', so B _C_8'. Hence

(A,B)E ? by definition. Finally we show TE f .

For any (A,B)�3: we have by (all) some (A',B')El}1
with A' _C_A S B'. By the definition of 35 : BSB'.
Hence (A',B') 2 (A,B)� g1. This completes the

proof of the theorem�

Example: From the example in sections 4 and S we

get

6 = {a}U{B|B'i1K}.

This family clearly satisfies (£1) and (8 2).

We note that the description of a full family ?

by means of� is more economical than by means of

m . But we can simplify the description still fur—
ther if we consider a family/� of generators of 3
under (finite) intersection, i.e. ,5 Ea and

B=mJIAEaL

Here of course by convention no =

a, so a is never

required in For any )3 a (unique!) smallest

exists, but 03 is completely described

by giving any It is this description which

allows us to see just what full families are possi—
ble: we can pick an arbitrary family/D of subsets

of a and construct� and ? from it. This process

gives all possible 5 .

We have the following, now trivial,

Theorem 4: Any family/3 of subsets of on gives rise

to a full family

§= {(A,B)| for all Gel.) (A gs implies B 56)}

such that” is a set of generators under intersec—

tion of its saturated sets 8 . Any full family of

dependencies over a can be obtained in this way.
Proof: a and B , the family it generates under

finite intersection, are easily shown to give rise

to the same full family 5 (cf. Theorem 3).|:l

7. JUSTIFICATION OF THE AXIOMS

Theorem 5: Let 3‘ be any full family of dependen-
cies over on. Then there exists a relationship R

over or with integer domains such that 7 is equal
to the dependency structure ?R of R.

Remark: We need to have the choice of sufficiently
large domains to avoid unwanted dependencies.
Proof: Let A be a family of enerators (of mini—

mal c rdinality, say) of the&
at é

defined from 3 via

Let p1,p2,...,pk be the first k prime

numbers where b = {Cl , , Gk} . We consider

a table with columns headed by the elements

of a. The lines fiza
-> N of R are defined for

nl nk n
i 6 {p1 ...pk ln. = 0 or 1} byf.(b)= Up. j

3 1

(3.?!)3

J

Intuitively speaking, we have removed from the

columns in each Gj the information about the power
of the prime pj present in the prime decomposition
of i. Thus the sets 6' are automatically "satura-

ted": every column ou side 6- contains information
which the attributes of Gj cannot provide. We see

that each B E 16 is also "saturated". Hence

(A,B) 6 3R iff the columns B contain no more primes
than are present in A, i.e., for all Gj E 16 (AEGJ'
implies B S Gj). Hence 95R = g .51

We leave the construction of an example to the

reader.

This theorem shows that our axioms (51) to (54)
characterize precisely all possible dependency
structures of relationships. Now we can use the
words "dependency structure of a relationship" and
"full family of dependencies" interchangeably.

8. STRUCTURE OF THE FAMILY OF CANDIDATE KEYS

Definition: If ’5 is a full family of dependencies,
the elements of

C = {Af(A,e) 65‘}

are called candidate keys of '3: .

We know that a candidate key must exist by (B 1),
and the example of sections 4, 5, and 6 shows that
there may be only one candidate key: C = {K}. In

general there will be many as is shown by the
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Theorem 6: The family of candidate keys C of a

dependency structure satisfies

(cl) C ¢ ¢ ,

(:2) if K1,K2 e C and KlEKZ then K1=K2 .

Conversely any C satisfying (C 1) and (C 2) is the

set of candidate keys of some full family 1? .

Proof: (Cl) follows from (£1), while (C2) fol-

lows directly from (M2). For the converse let C
satisfy (c1) and (62), and let

B = {BI for all KEC BéHU{on}.

8 satisfies (31) and (£2) and so gives rise

to an 5 by theorem 3. is generated by/g =B—{a}.

3 = {(A,B) Iif a set G E on not containing any

K E C contains A, then B E G}

{(A,B) (if A does not contain any K E 2: ,

then B E A}.

Hence those maximal (A,B) E 3: for which B = 0!.

are the dependencies of the form (K,o) for KEC .0

ProofI_I: We give a second proof of the converse

via a relationshi R.

Let {L1,..,Lk}=(LL n K as 9) for all K eC }.

Let Lo=¢. Let R={ti l i=0,...,k}

where

fi(a)={i
if aELi

0 otherwise.

It is now easy to show that C is the set of all

candidate keys of 3RD
9. APPLICATIONS

The dependency structure axioms (’51) to (34) are

not intended to be an optimal choice, however, they

do provide a standard for verifying the correctness

and completeness of other axiom systems. Consider,

for example, the following one proposed in [S] by

Delobel and Casey:

(DC 1) Transitivity: if E—>F and PG the E—>G .

(DC 2) Reflexivity: ErE .

(DC 3) Projectivity: if EEF then F->E .

(DC 4) Additivity: if ErF and E-*G then E-rFUG .

(DC 5) Pseudotransitivity: if ErF and FUGrH then

EUGr’H .

(DC 6) Augmentation: if E66 then EUF-rG .

It is easy to verify that (DC 1), (DC 3), and

(DC 4) together are equivalent to our axioms for

full families of dependencies. The same is true of

(DC 2), (DC 5), and (DC 6).

We shall now introduce boolean functions as in [S] ,

but we shall use an interpretation of them which

shows that their connection to dependency struc—

tures reaches deeper than the level of mere symbol

manipulation.

Let a be a finite set of attributes. A boolean

evaluation of these attributes is a function

e2u * {0,1}. The set of all such e will be denoted

by {0,1la. Every e can be defined in terms of the

set A = {bIbEa,e(b) = 1}, and e
= IA is called the

indicator function of A.

We consider boolean functions f of the variables on,

that is, f:{0,1}°‘ " {0,1}. For each been we define

the boolean function fb by: fb(IA)
= IA(b) for all

A E a. As usual, we just write b instead of fb.
If X E a, we write HX for the logical product of

the boolean functions b for b E X. We have:

IIX(IA) = 1 iff x g A.

If (Xi,Yi) i=1,...,n is a set of dependencies over

on, they define the boolean function

n

f =

.2 nxi( nYi)‘
i=1

Theorem 7: lff is defined by a set of dependencies
then the smallest full family 35 containing those

dependencies satisfies

X->Yiff 11X(]1Y)'

Furthermore, f(lB)
= 0 iff B is saturated according

to

Proof: f(IB) = 0 iff Xi E B implies Yi E B for all

i=l,...,n. The set E of all such B satisfies (£1)
and (B 2), and so defines by theorem 3 a full family

3: whereby (X,Y) E 3‘ iff for all B E 8 : X EB
implies Y E B. Clearly (xixi) e 9" for all i. If

35‘ is El full family containing the (Xi,Yi), it

corresponds to a 13' where for all 8' E 03' and

i=1,...,n: Xi E 8' implies Yi E B' . Hence B'

and so by theorem 3 9" 2’3: . The condition

11X(IIY)' is equivalent to : for all B E 03

(x g B implies Y E B), i.e., (X,Y) e 37.13

We immediately obtain the result of Appendix A of

[S] :

Corollary A: lff is defined by a set of dependen-

cies, then any representation off as

=
I

1‘ 1:1HAi(1'IBi)

yields a set of dependencies (Ai,Bi) generating the

same dependency structure.

We also have the result of Appendix B of [5]:

Corollary B: K is a candidate key of the dependen-

cy structure defining f iff 11K is a prime implicant

off + 11d having no complemented variables.

Proof: HK(T[0¢)' <1“ iff HKHK +Ha ,D

10 . CONCLUSIONS

The axiomatic formulation of full families of de—

pendencies in section 4 is appropriate for the treat-

ment of the most general type of dependency struc-

ture which can arise in a relational model of data.

Although space does not permit giving details, it

is clearly necessary to define normal forms not in

terms of relationships R, but in terms of dependen—
cy structures 3: which are imposed a priori on

("time—varying") relationships R by the meanings of

the attributes. At any time we must have R 3’}.
The dependencies prescribed by must be present

in the actual data, perhaps along with other for—

tuitous dependencies which R is too small to exclude.

A precise analysis of the restrictions thus imposed
on the "time—varying" relationships R should yield
a better understanding of the decomposition of R

into normal forms.
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