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Abstract

3D multi-object tracking (MOT) has witnessed numer-
ous novel benchmarks and approaches in recent years, es-
pecially those under the “tracking-by-detection” paradigm.
Despite their progress and usefulness, an in-depth analysis
of their strengths and weaknesses is not yet available. In
this paper, we summarize current 3D MOT methods into
a unified framework by decomposing them into four con-
stituent parts: pre-processing of detection, association, mo-
tion model, and life cycle management. We then ascribe
the failure cases of existing algorithms to each component
and investigate them in detail. Based on the analyses,
we propose corresponding improvements which lead to a
strong yet simple baseline: SimpleTrack. Comprehensive
experimental results on Waymo Open Dataset and nuScenes
demonstrate that our final method could achieve new state-
of-the-art results with minor modifications.

Furthermore, we take additional steps and rethink
whether current benchmarks authentically reflect the abil-
ity of algorithms for real-world challenges. We delve into
the details of existing benchmarks and find some intrigu-
ing facts. Finally, we analyze the distribution and causes
of remaining failures in SimpleTrack and propose future di-
rections for 3D MOT. Our code is available at https :
//github.com/TuSimple/SimpleTrack.

1. Introduction

Multi-object tracking (MOT) is a composite task in com-
puter vision, combining both the aspects of localization and
identification. Given its complex nature, MOT systems gen-
erally involve numerous interconnected parts, such as the
selection of detections, the data association, the modeling
of object motions, etc. Each of these modules has its spe-
cial treatment and can significantly affect the system perfor-
mance as a whole. Therefore, we would like to ask which
components in 3D MOT play the most important roles, and
how can we improve them?

*This work is complete during the first author’s internship at TuSimple.

Bearing such objectives, we revisit the current 3D MOT
algorithms [3, 10, 28, 37, 43, 44]. These methods mostly
adopt the “tracking by detection” paradigm, where they di-
rectly take the bounding boxes from 3D detectors and build
up tracklets across frames. We first break them down into
four individual modules and examine each of them: pre-
processing of input detections, motion model, association,
and life cycle management. Based on this modular frame-
work, we locate and ascribe the failure cases of 3D MOT to
the corresponding components and discover several over-
looked issues in the previous designs.

First, we find that inaccurate input detections may con-
taminate the association. However, purely pruning them by
a score threshold will sacrifice the recall. Second, we find
that the similarity metric defined between two 3D bound-
ing boxes need to be carefully designed. Neither distance-
based nor simple IoU works well. Third, the object mo-
tion in 3D space is more predictable than that in the 2D
image space. Therefore, the consensus between motion
model predictions and even poor observations (low score
detections) could well indicate the existence of objects. II-
luminated by these observations, we propose several sim-
ple yet non-trivial solutions. The evaluation on Waymo
Open Dataset [34] and nuScenes [8] suggests that our final
method “SimpleTrack” is competitive among the 3D MOT
algorithms (in Tab. 6 and Tab. 7).

Besides analyzing 3D MOT algorithms, we also re-
flect on current benchmarks. We emphasize the need for
high-frequency detections and the proper handling of out-
put tracklets in evaluation. To better understand the upper
bound of our method, we further break down the remaining
errors based on ID switch and MOTA metrics. We believe
these observations could inspire the better design of algo-
rithms and benchmarks.

In brief, our contributions are as follow:

* We decompose the pipeline of “tracking-by-detection”
3D MOT framework and analyze the connections be-
tween each component and failure cases.

e We propose corresponding treatments for each mod-
ule and combine them into a simple baseline. The re-
sults are competitive on the Waymo Open Dataset and
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Figure 1. 3D MOT pipeline. For simplicity, we only visualize the steps between frame k and frame k+1. Best view in color.

nuScenes.

* We also analyze existing 3D MOT benchmarks and ex-
plain the potential influences of their designs. We hope
that our analyses could shed light for future research.

2. Related Work

Most 3D MOT methods [3, 10,28,37,43,44] adopt the
“tracking-by-detection” framework because of the strong
power of detectors. We first summarize the representative
3D MOT work and then highlight the connections and dis-
tinctions between 3D and 2D MOT.

2.1.3D MOT

Many 3D MOT methods are composed of hand-crafted
rule-based components. AB3DMOT [37] is the common
baseline of using IoU for association and a Kalman filter as
the motion model. Its notable followers mainly improve on
the association part: Chiu ef al. [10] and CenterPoint [43]
replace IoU with Mahalanobis and L2 distance, which per-
forms better on nuScenes [8]. Some others notice the im-
portance of life cycle management, where CBMOT [3] pro-
poses a score-based method to replace the “count-based”
mechanism, and Péschmann ef al. [28] treats 3D MOT as
optimization problems on factor graphs. Despite the effec-
tiveness of these improvements, a systematic study on 3D
MOT methods is in great need, especially where these de-
signs suffer and how to make further improvements. To this
end, our paper seeks to meet the expectations.

Different from the methods mentioned above, many
others attempt to solve 3D MOT with fewer manual de-
signs. [2,9, 15,38] leverage rich features from RGB images
for association and life cycle control, and Chiu et al. [9]

specially uses neural networks to handle the feature fusion,
association metrics, and tracklet initialization. Recently,
OGR3MOT [44] follows Guillem et al. [7] and solves 3D
MOT with graph neural networks (GNN) in an end-to-end
manner, focusing on the data association and the classifica-
tion of active tracklets, especially.

2.2.2D MOT

2D MOT shares the common goal of data association
with 3D MOT. Some notable attempts include probabilis-
tic approaches [, 16,30, 32], dynamic programming [ 1],
bipartite matching [6], min-cost flow [4,46], convex opti-
mization [27,35,36,45], and conditional random fields [42].
With the rapid progress of deep learning, many meth-
ods [7, 12—14,19,40] learn the matching mechanisms and
others [17,20,21,24,26] learn the association metrics.

Similar to 3D MOT, many 2D trackers [5,22,33,48] also
benefit from the enhanced detection quality and adopt the
“tracking-by-detection” paradigm. However, the objects on
RGB images have varied sizes because of scale variation;
thus, they are harder for association and motion models. But
2D MOT can easily take advantage of rich RGB information
and use appearance models [18, 19, 33, 39], which is not
available in LIDAR based 3D MOT. In summary, the design
of MOT methods should fit the traits of each modality.

3. 3D MOT Pipeline

In this section, we decompose 3D MOT methods into the
following four parts. An illustration is in Fig. 1 .

Pre-processing of Input Detections. It pre-processes the
bounding boxes from detectors and selects the ones to be



used for tracking. Some exemplar operations include se-
lecting the bounding boxes with scores higher than a cer-
tain threshold. (In “Pre-processing” Fig. 1, some redundant
bounding boxes are removed.)

Motion Model. It predicts and updates the states of ob-
jects. Most 3D MOT methods [3, 10, 37] directly use the
Kalman filter, and CenterPoint [43] uses the velocities pre-
dicted by detectors from multi-frame data. (In “Prediction”
and “Motion Model Update” Fig. 1.)

Association. It associates the detections with tracklets.
The association module involves two steps: similarity com-
putation and matching. The similarity measures the dis-
tance between a pair of detection and tracklet, while the
matching step solves the correspondences based on the pre-
computed similarities. AB3DMOT [37] proposes the base-
line of using IoU with Hungarian algorithm, while Chiu et
al. [10] uses Mahalanobis distance and greedy algorithm,
and CenterPoint [43] adopts the L2 distance. (In “Associa-
tion” Fig. 1.)

Life Cycle Management. It controls the “birth”, “death”
and “output” policies. “Birth” determines whether a de-
tection bounding box will be initialized as a new track-
let; “Death” removes a tracklet when it is believed to have
moved out of the attention area; “Output” decides whether
a tracklet will output its state. Most of the MOT algo-
rithm adopts a simple count-based rule [10,37,43], and CB-
MOT [3] improves birth and death by amending the logic of
tracklet confidences. (In “Life Cycle Management” Fig. 1.)

4. Analyzing and Improving 3D MOT

In this section, we analyze and improve each module in
the 3D MOT pipeline. For better clarification, we ablate the
effects of every modification by removing it from the final
variant of SimpleTrack. By default, the ablations are all on
the validation split with the CenterPoint [43] detection. We
also provide additive ablation analyses and the comparison
with other methods in Sec. 4.5.

4.1. Pre-processing

To fulfill the recall requirements, current detectors usu-
ally output a large number of bounding boxes with scores
roughly indicating their quality. However, if these boxes
are treated equally in the association step of 3D MOT, the
bounding boxes with low quality or severe overlapping may
deviate the trackers to select the inaccurate detection for ex-
tending or forming tracklets (as in the “raw detection” of
Fig. 2). Such a gap between the detection and MOT task
needs careful treatment.

[ Scene Layout ] [ Raw Detection ][ Score Filter ][ NMS ]

%

Figure 2. Comparison between score filtering and NMS. To re-
move the redundant bounding boxes on row 2, score filtering needs
at least a 0.24 threshold, but this will eliminate the detections on
row 1. However, NMS can well satisfy both by removing the over-
lapping on row 2 and maintaining the recall on row 1.

NMS ‘ AMOTAT AMOTP| MOTAT IDS |

X 0.673 0.574 0.581 557
v 0.687 0.573 0592 519

Table 1. Ablation for NMS on nuScenes.
NMS ‘ Vehicle
| MOTAT MOTP| IDS(%)} | MOTAT MOTP| IDS(%)|

Pedestrian

0.5609 0.1681  0.09

X 0.4962 0.3090  5.00
v 0.5612 0.1681  0.08

0.5776 0.3125  0.42

Table 2. Ablation for NMS on WOD.

3D MOT methods commonly use confidence scores to
filter out the low-quality detections and improve the pre-
cision of input bounding boxes for MOT. However, such
an approach may be detrimental to the recall as they di-
rectly abandon the objects with poor observations (top row
in Fig. 2). It is also especially harmful to metrics like
AMOTA, which needs the tracker to use low score bound-
ing boxes to fulfill the recall requirements.

To improve the precision without significantly decreas-
ing the recall, our solution is simple and direct: we apply
stricter non-maximum suppression (NMS) to the input de-
tections. As shown in the right of Fig. 2, the NMS operation
alone can effectively eliminate the overlapped low-quality
bounding boxes while keeping the diverse low-quality ob-
servations, even on regions like sparse points or occlusion.
Therefore, by adding NMS to the pre-processing module,
we could roughly keep the recall, but greatly improves the
precision and benefits MOT.

On WOD, our stricter NMS operation removes 51%
and 52% bounding boxes for vehicles and pedestrians and
nearly doubles the precision: 10.8% to 21.1% for vehicles,
5.1% to 9.9% for pedestrians. At the same time, the re-
call drops relatively little from 78% to 74% for vehicles
and 83% to 79% for pedestrians. According to Tab. 1 and
Tab. 2, this largely benefits the performance, especially on



Method ‘ Vehicle Pedestrian loU vs GloU L2 Distance vs GloU
| MOTAT MOTP| IDS(%)}. | MOTAT MOTP), IDS(%)] PR MUY= ==
Ty +1 BBOX
KF | 0.5612 0.1681 008 | 0.5776 03125 0.42 (e B0 Tisr BBOX o
(6AY 0.5515 0.1691 0.14 0.5661 0.3159 0.58 A
KF PD 0.5516 0.1691 0.14 0.5654 0.3158 0.63 A =

Table 3. Comparison of motion models on Waymo Open Dataset.
“KF” denotes Kalman filters; “CV” denotes constant velocity
model; “KF-PD” denotes the variant using Kalman filter only for
motion prediction. Details in Sec. 4.2.

Method | AMOTAT AMOTP| MOTA? IDS |

KF 0.687 0.573 0.592 519
Cv 0.690 0.564 0.592 516

Table 4. Comparison of motion models on nuScenes. Abbrevia-
tions are identical to Tab. 3. Details in Sec. 4.2.

the pedestrian (right part of Tab. 2), where the object detec-
tion task is harder.

4.2. Motion Model

Motion models depict the motion status of tracklets.
They are mainly used to predict the candidate states of ob-
jects in the next frame, which are the proposals for the
following association step. Furthermore, the motion mod-
els like the Kalman filter can also potentially refine the
states of objects. In general, there are two commonly
adopted motion models for 3D MOT: Kalman filter (KF),
e.g. AB3DMOT [37], and constant velocity model (CV)
with predicted speeds from detectors, e.g. CenterPoint [43].
The advantage of KF is that it could utilize the information
from multiple frames and provide smoother results when
facing low-quality detection. Meanwhile, CV deals bet-
ter with abrupt and unpredictable motions with its explicit
speed predictions, but its effectiveness on motion smooth-
ing is limited. In Tab. 3 and Tab. 4, we compare the two
of them on WOD and nuScenes, which provides clear evi-
dence for our claims.

In general, these two motion models demonstrate simi-
lar performance. On nuScenes, CV marginally outperforms
KF, while it is the opposite on WOD. The advantages of KF
on WOD mainly come from the refinement for the bounding
boxes. To verify this, we implement the “KF-PD” variant,
which uses KF only for providing motion predictions prior
to association, and the outputs are all original detections.
Eventually, the marginal gap between “CV” and “KF-PD”
in Tab. 3 supports our claim. On nuScenes, the CV mo-
tion model is slightly better due to the lower frame rates
on nuScenes (2Hz). To prove our conjecture, we apply
KF and CV both under a higher frequency 10Hz setting on
nuScenes', and KF marginally outperforms CV by 0.696
versus 0.693 in AMOTA this time.

To summarize, the Kalman Filter fits better for high-

IPlease check Sec. 5.1 for how we build 10Hz settings on nuScenes.
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Figure 3. Illustration of association metrics. Left: IoU versus
GloU. Right: L2 Distance versus GloU. Details are in Sec. 4.3.1.

frequency cases because of more predictable motions, and
the constant velocity model is more robust for low-frequency
scenarios with explicit speed prediction. Since inferring the
speed is not yet common for detectors, we adopt the Kalman
filter for SimpleTrack without loss of generality.

4.3. Association
4.3.1 Association Metrics: 3D GIoU

IoU based [37] and distance based [10,43] association met-
rics are the two prevalent choices in 3D MOT. As in Fig. 3,
they have typical but different failure modes. IoU com-
putes the overlapping ratios between bounding boxes, so it
cannot connect the detections and motion predictions if the
IoU between them are all zeros, which are common at the
beginnings of tracklets or on objects with abrupt motions
(the left of Fig. 3). The representatives for distance-based
metrics are Mahalanobis [10] and L2 [43] distances. With
larger distance thresholds, they can handle the failure cases
of IoU based metrics, but they may not be sensitive enough
for nearby detection with low quality. We explain such sce-
narios on the right of Fig. 3. On frame k, the blue motion
prediction has smaller L2 distances to the green false posi-
tive detection, thus it is wrongly associated. Illuminating by
such example, we conclude that the distance-based metrics
lack discrimination on orientations, which is just the advan-
tage of IOU based metrics.

To get the best of two worlds, we propose to gener-
alize “Generalized IoU” (GlIoU) [31] to 3D for associa-
tion. Briefly speaking, for any pair of 3D bounding boxes
B1, Bs, their 3D GloU is as Eq. 1, where I, U are the inter-
section and union of By and Bs. C'is the enclosing convex
hull of U. V represents the volume of a polygon. We set
GIoU > —0.5 as the threshold for every category of objects
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Figure 4. Comparison of association metrics on WOD (left & middle) and nuScenes (right). “M-Dis” is the short for Mahalanobis distance.
The best method is closest to the bottom-right corner, having the lowest ID-Switches and highest MOTA/AMOTA.

on both WOD and nuScenes for this pair of associations to
enter the subsequent matching step.

Vo =Vp, + VB, = VI,

1
GIoU(By, By) = Vi /Vu — (Ve — Vu)/Ve. @

As in Fig 3, the GIoU metric can handle both patterns
of failures. The quantitative results in Fig. 4 also show the
ability of GIoU for improving the association on both WOD
and nuScenes.

4.3.2 Matching Strategies

Generally speaking, there are two approaches for the match-
ing between detections and tracklets: 1) Formulating the
problem as a bipartite matching problem, and then solving
it using Hungarian algorithm [37]. 2) Iteratively associating
the nearest pairs by greedy algorithm [10,43].

We find that these two methods heavily couples with the
association metrics: IoU based metrics are fine with both,
while distance-based metrics prefer greedy algorithms. We
hypothesize that the reason is that the range of distance-
based metrics are large, thus methods optimizing global op-
timal solution, like the Hungarian algorithm, may be ad-
versely affected by outliers. In Fig. 5, we experiment with
all the combinations between matching strategies and asso-
ciation metrics on WOD. As demonstrated, IoU and GloU
function well for both strategies, while Mahalanobis and L2
distance demand greedy algorithm, which is also consistent
with the conclusions from previous work [10].

4.4. Life Cycle Management

We analyze all the ID-Switches on WOD?, and catego-
rize them into two groups as in Fig. 6: wrong association
and early termination. Different from the major focus of
many work, which is association, we find that the early ter-
mination is actually the dominating cause of ID-Switches:

2We use py-motmetrics [23] for the analysis.
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Figure 5. Comparison of matching strategies on WOD.
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Figure 6. Illustration for two major types of ID-Switches.

95% for vehicle and 91% for pedestrian. Among the early
terminations, many of them are caused by point cloud spar-
sity and spatial occlusion. To alleviate this issue, we utilize
the free yet effective information: consensus between mo-
tion models and detections with low scores. These bound-
ing boxes are usually of low localization quality, however
they are strong indication of the existence of objects if they
agree with the motion predictions. Then we use these to
extend the lives of tracklets.

Bearing such motivation, we propose “Two-stage Asso-
ciation.” Specifically, we apply two rounds of association
with different score thresholds: a low one T; and a high
one T}, (e.g. 0.1 and 0.5 for pedestrian on WOD). In stage
one, we use the identical procedure as most current algo-
rithms [10, 37,43]: only the bounding boxes with scores
higher than T}, are used for association. In stage two, we
focus on the tracklets unmatched to detections in stage one



Frame Number 1 2 3 4 5
Action Initialize Match Predict Death Initialize

One-stage | Object ID A A A A B
ID-Switch 0 0 0 0 1

Action Initialize Match Extend Extend Match

Two-stage | Object ID A A A A A
ID-Switch 0 0 0 0 0

Figure 7. Comparison for “One-stage” and “Two-stage” associa-
tion with a hypothetical example. “Extend” means “extending the
life cycles,” and “Predict” means “using motion predictions due to
no association.” Suppose T, = 0.5 and T; = 0.1 are the score
thresholds, the “one-stage” method early terminates the tracklet
because of consecutively lacking associations. Details in Sec. 4.4.

Method ‘ Vehicle Pedestrian

| MOTAT MOTP| IDS(%)| | MOTAT MOTP/ IDS(%)|

One 0.5567 0.1682  0.46
Two 0.5612 0.1681  0.08

0.5718 0.3125  0.96
0.5776 03125  0.42

Table 5. Ablation for “Two-stage Association” on WOD. “One”
and “Two” denotes the previous one-stage association and our
two-stage association methods. Details in Sec. 4.4.

and relax the conditions on their matches: detections having
scores larger than T; will be sufficient for a match. If the
tracklet is successfully associated with one bounding box in
stage two, it will still keep being alive. However, as the low
score detections are generally in poor quality, we don’t out-
put them to avoid false positives, and they are also not used
for updating motion models. Instead, we use motion predic-
tions as the latest tracklet states, replacing the low quality
detections.

We intuitively explain the differences between our “Two-
stage Association” and traditional “One-stage Association”
in Fig. 7. Suppose T = 0.5 is the original score thresh-
old for filtering detection bounding boxes, the trackers will
then neglect the boxes with scores 0.4 and 0.2 on frames 3
and 4, which will die because of lacking matches in contin-
uous frames and this eventually causes the final ID-Switch.
In comparison, our two-stage association can maintain the
active state of the tracklet.

In Tab. 5, our approach greatly decreases the ID-
Switches without hurting the MOTA. This proves that Sim-
pleTrack is effective in extending the life cycles by using
detections more flexibly. Parallel to our work, a similar ap-
proach is also proven to be useful for 2D MOT [47].

4.5. Integration of SimpleTrack

In this section, we integrate the aforementioned tech-
niques into the unified SimpleTrack and demonstrate how
they improve the performance step by step.

In Fig. 8, we illustrate how the performance of 3D MOT
trackers improve from the baselines. On WOD, although

Method ‘ Vehicle Pedestrian

| MOTAT MOTP| IDS(%)| | MOTAT MOTP| IDS(%))
AB3DMOT [37] | 05773 01614  0.26 | 05380 03163  0.73
Chiueral. [10] | 04932 01689 062 | 04438 03227 1.83
CenterPoint [43] | 0.5938 0.1637 032 | 0.5664 03116  1.07
SimpleTrack | 0.6030 0.1623  0.08 | 0.6013 0.3114  0.40

Table 6. Comparison on WOD test split (L2). CenterPoint [43] de-
tections are used. We mark the best in red and the second in blue.
We list the methods using public detection. For AB3DMOT [37]
and Chiu et al. [10], we report their best leaderboard entries.

Methods ‘ AMOTAT AMOTP| MOTAT IDS |
AB3DMOT [37] 0.151 1.501 0.154 9027
Chiu et al. [10] 0.550 0.798 0.459 776
CenterPoint [43] 0.638 0.555 0.537 760
CBMOT [3] 0.649 0.592 0.545 557
OGR3MOT [44] 0.656 0.620 0.554 288
SimpleTrack (2Hz) 0.658 0.568 0.557 609

SimpleTrack (10Hz) 0.668 0.550 0.566 575

Table 7. Comparison on nuScenes test split. CenterPoint [43] de-
tections are used. We list the methods using public detection. We
mark the best in red and the second in blue. For CBMOT [3] and
OGR3MOT [44], we report their numbers with CenterPoint [43]
detection. Our numbers using both 2Hz and 10Hz frame rate de-
tections are reported (details of our 10Hz setting are in Sec. 5).

the properties of vehicles and pedestrian are much differ-
ent, each technique is applicable to both. On nuScenes,
every proposed improvement is also effective for both the
AMOTA and ID-Switch.

We also report the test set performance and compare with
other 3D MOT methods. Combining our techniques leads
to new state-of-the-art results (in Tab. 6, Tab. 7).’

5. Rethinking nuScenes

Besides the techniques mentioned above, we delve into
the design of benchmarks. The benchmarks greatly facili-
tate the development of research and guide the designs of
algorithms. Contrasting WOD and nuScenes, we have the
following findings: 1) The frame rate of nuScenes is 2Hz,
while WOD is 10Hz. Such low frequency adds unneces-
sary difficulties to 3D MOT (Sec. 5.1). 2) The evaluation
of nuScenes requires high recalls with low score thresholds.
And it also pre-processes the tracklets with interpolation,
which encourages trackers to output the confidence scores
reflecting the entire tracklet quality, but not the frame qual-
ity (Sec. 5.2). We hope these two findings could inspire the
community to rethink the benchmarks and evaluation pro-
tocols of 3D tracking.

5.1. Detection Frequencies

Tracking generally benefits from higher frame rates, be-
cause motion is more predictable in short intervals. We

3Validation split comparisons are in the supplementary.
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Figure 8. Improvements from SimpleTrack on WOD (left & middle) and nuScenes (right). We use the common baselines of
AB3DMOT [37] on WOD and Chiu et al. [10] on nuScenes. For nuScenes, the improvements of “10Hz-Two” (using 10Hz detection
and two-stage association) is in Sec. 5.1, and “Pred” (outputting motion model predictions) is in Sec. 5.2. The names for modifications are
on the x-axis. Better MOTA and ID-Switch values are higher on the y-axis for clearer visualization.

Benchmark ‘ Data Annotation Model

Waymo Open Dataset | 10Hz 10Hz 10Hz
nuScenes 20Hz 2Hz 2Hz

Table 8. Frequency comparison of benchmarks.

compare the frequencies of point clouds, annotations, and
common MOT frame rates on the two benchmarks in Tab. 8.
On nuScenes, it has 20Hz point clouds but only 2Hz anno-
tations. This leads to most common detectors and 3D MOT
algorithms work under 2Hz, even they actually utilize all the
20Hz LiDAR data and operate faster than 2Hz. Therefore,
we investigate the effect of high-frequency data as follows.

Although the information is more abundant with high
frequency (HF) frames, it is non-trivial to incorporate them
because nuScenes only evaluates on the low-frequency
frames, which we refer to as “evaluation frames.” In Tab. 9,
simply using all the 10Hz frames does not improve the per-
formance. This is because the low-quality detection on the
HF frames may deviate the trackers and hurt the perfor-
mance on the sampled evaluation frames. To overcome this
issue, we explore by first applying the “One-stage Associ-
ation” on HF frames, where only the bounding boxes with
scores larger than T;, = 0.5 are considered and used for
motion model updating. We then adopt the “Two-stage As-
sociation” (described in Sec.4.4) by using the boxes with
scores larger than T; = 0.1 to extend the tracklets. As
in Tab. 9, our approach significantly improves both the
AMOTA and ID-Switches. We also try to even increase the
frame rate to 20Hz, but this barely leads to further improve-
ments due to the deviation issue. So SimpleTrack uses the
10Hz setting in our final submission to the test set.*

5.2. Tracklet Interpolation

The AMOTA metric used in nuScenes calculates the av-
erage MOTAR [37] at different recall thresholds, which re-

4Because of the submission time limits to nuScenes test set, we are
only able to report the “10Hz-One” variant in Tab. 7. It will be updated to
“10Hz-Two” once we had the chance.

Setting | AMOTAT AMOTP| MOTA{ IDS |
2Hz | 0687 0573 0592 519
10Hz 0.687  0.548 0599 512

10Hz - One 0.696 0.564 0.603 450
10Hz - Two 0.696 0.547 0.602 403

20Hz - Two ‘ 0.690 0.547 0.598 416

Table 9. MOT with higher frame rates on nuScenes. “10Hz” is
the vanilla baseline of using all the detections on high frequency
(HF) frames. “-One” denotes “One-stage,” and “-Two” denotes
“Two-stage.” Details in Sec. 5.1.

Predictions | AMOTAT AMOTP| MOTA?t IDS | RECALLft

X 0.667 0.612 0572 754 0.696
v 0.687 0.573 0.592 519 0.725

Table 10. Improvement from “outputting motion model predic-
tions” on nuScenes (2Hz setting).

quires the trackers output the boxes of all score segments.
In order to further improve the recall, we output the motion
model predictions for frames and tracklets without associ-
ated detection bounding boxes, and empirically assign them
lower scores than any other detection. In our case, their
scores are 0.01 x Sp, where Sp is the confidence score of
the tracklet in the previous fram. As shown in Tab. 10, this
simple trick improves the overall recall and AMOTA.
However, we discover that enhancing the recall is not
the only reason for such improvement. Besides the bound-
ing boxes, the scores of the motion model predictions also
make a significant contribution. This starts with the evalua-
tion protocol on nuScenes, where they interpolate the in-
put tracklets to fill in the missing frames and change all
the scores with their tracklet-average scores as illustrated
in Fig. 9. Under this context, our approach can explicitly
penalize the low-quality tracklets, which generally contain
more missing boxes replaced by motion model predictions.
In summary, such interpolation on nuScenes encourages
the trackers to treat tracklet quality holistically and out-
put calibrated quality-aware scores. However the quality of
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Figure 9. How the motion predictions and nuScenes interpolation
changes tracklet scores. Dashed arrows are the directions for in-
terpolation. On Frame 2 and 4 the boxes with score 0.05 are our
motion predictions. The “0.5” and “0.32” are the tracklet-average
scores with or without motion predictions. Details in Sec. 5.2.

Method ‘ Vehicle Pedestrian

| MOTAT IDS(%). FPL FN| | MOTAT IDS(%), FP| FNJ

SimpleTrack | 0.561 0.078 0.104 0.334 | 0578 0425 0.109 0.309
GT Output 0.741 0.104  0.000 0.258 | 0.778  0.504 0.003 0.214
GT All 0.785  0.000 0.000 0.215 | 0.829  0.000 0.000 0.171

Table 11. Oracle Experiments on WOD.

boxes may vary a lot across frames even for the same track-
let, thus we suggest depicting the quality of a tracklet by
only one score is imperfect. Moreover, future information
is also introduced in this interpolation step and it changes
the tracklet results. This could also bring the concern on
whether the evaluation setting is still a fully online one.

6. Error Analyses

In this section, we conduct analyses on the remaining
failure cases of SimpleTrack and propose potential future
directions for improving “tracking by detection” paradigm.
Without loss of generality, we use WOD as an example.

6.1. Upper Bound Experiment Settings

To quantitatively evaluate the causes of failure cases,
we contrast SimpleTrack with two different oracle variants.
The results are summarized in Tab. 11.

GT Output erases the errors caused by “output” policy. We
compute the IoU between the bounding boxes from Simple-
Track with the GT boxes at the “output” stage, then use the
IoU to decide if a box should be output instead of the detec-
tion score. °

GT All is the upper bound of tracking performance with
CenterPoint boxes. We greedily match the detections from
CenterPoint to GT boxes, keep the true positive and assign
them ground-truth ID.

5The ID-Switch increases because we output more bounding boxes and
IDs. The 0.003 false positives in pedestrians are caused by some boxes
matching with the same GT box in crowded scenes.

6.2. Analyses for “Tracking By Detection”

ID-Switches. We break down the causes of ID-Switches as
in Fig. 6. Although early termination has been greatly de-
creased by the scale of 86% for vehicle and 70% for pedes-
trian with “Two-stage Association,” it still takes up 88% and
72% failure cases in the remaining ID-Switches in Simple-
Track for vehicle and pedestrian, respectively. We inspect
these cases and discover that most of them result from long-
term occlusion or the returning of objects from being tem-
porarily out of sight. Therefore, in addition to improving the
association, potential future work can develop appearance
models like in 2D MOT [ 18, 19,33,39] or silently maintain
their states to re-identify these objects after they are back.
FP and FN. The “GT All” in Tab. 11 shows the upper bound
for MOT with CenterPoint [43] detection, and we analyze
the class of vehicle for example. Even with “GT All” the
false negatives are still 0.215, which are the detection FN
and can hardly be fixed under the “tracking by detection”
framework. Comparing “GT All” and SimpleTrack, we find
that the tracking algorithm itself introduces 0.119 false neg-
atives. We further break them down as follows. Specifically,
the difference between “GT Output” and “GT ALL” indi-
cates that the 0.043 false negatives are caused by the unini-
tialized tracklets resulting from NMS and score threshold
in pre-processing. The others come from life-cycle man-
agement. The “Initialization” requires two frames of ac-
cumulation before outputting a tracklet, which is same as
AB3DMOT [37]. This yields a marginal 0.005 false neg-
atives. Our “Output” logic uses detection score to decide
output or not, taking up the false negatives number 0.076.
Based on these analyses, we can conclude that the gap is
mainly caused by the inconsistency between the scores and
detection quality. By using historical information, 3D MOT
can potentially provide better scores compared to single
frame detectors, and this has already drawn some recent at-
tention [3,44].

7. Conclusions and Future Work

In this paper, we decouple the “tracking by detection” 3D
MOT algorithms into several components and analyze their
typical failures. With such insights, we propose correspond-
ing enhancements of using NMS, GloU, and Tivo-stage As-
sociation, which lead to our SimpleTrack. In addition, we
also rethink the frame rates and interpolation pre-processing
in nuScenes. We eventually point out several possible future
directions for “tracking by detection” 3D MOT.

However, beyond the “tracking by detection” paradigm,
there are also branches of great potential. For better bound-
ing box qualities, 3D MOT can refine them using long term
information [25, 29, 41], which are proven to outperform
the detections based only on local frames. The future work
can also transfer the current manual rule-based methods into



learning-based counterparts, e.g. using learning based intra-
frame mechanisms to replace the NMS, using inter-frame
reasoning to replace the 3D GIoU and life cycle manage-
ment, etc.

Acknowledgment. We would like to thank Tianwei Yin
for kindly helping us during our applying the CenterPoint
detection to 3D multi-object tracking.

A. Appendix for SimpleTrack
A.1. Validation Split Comparison

We compare our SimpleTrack with other 3D MOT meth-
ods on the validation splits as in Tab. A and Tab. B. In
the experiments, our SimpleTrack also demonstrates strong
performance. On both Tab. A and Tab. B, our Simple-
Track can outperform the methods without learning based
modules, which is consistent with the test set performance
in the main paper (Tab. 6 and Tab. 7). In addition, we
find it interesting in Tab. B that the learning based method
OGR3MOT [44] can achieve better performance than our
2Hz SimpleTrack, which demonstrate the potential of ap-
plying learning techniques for 3D MOT. However, such ad-
vantage of OGB3MOT vanishes for AMOTA on the test set,
as in the Tab. 7 of the main paper. This suggests that our
learning-free modifications may have the ability to adapt to
the domain gaps in the data.

A.2. Experimental Setup

Due to the space constraints, we discuss the detailed
hyper-parameters and settings for our SimpleTrack here.

Waymo Open Dataset

1. Pre-process. We use CenterPoint detection [43], and
then apply NMS with the IoU threshold equals to 1/4
onto the detection bounding boxes.

2. Association. We use GIoU as the association metric
and Hungarian algorithm to solve the matchings. The
threshold for GIoU is -0.5 across all types of objects.

3. Motion Model. We use the default Kalman filter pa-
rameters as AB3DMOT [37], and pair the usages of
Hungarian algorithm.

4. Life Cycle Management. The life cycle management
is the same as AB3DMOT [37], 3 hits to start out-
putting a tracker and consecutive 2 misses terminates
a tracklet. We set the threshold for outputting detec-
tion bounding boxes as 0.7 for vehicle and cyclist, and
0.5 for pedestrian. In our “Two-stage association,” we
adopt the low score threshold as 0.1.

| Vehicle Pedestrian
Method

| MOTAT MOTP| IDS(%)} | MOTAT MOTP| IDS(%)|
AB3DMOT™* [37] | 0.5572 0.1679 0.40 0.5224  0.3098 2.74
Chiu et al. * [10] 0.5406 0.1665 0.37 0.4810 0.3086 3.34

CenterPoint [43] 0.5505 0.1691 0.26 0.5493  0.3137 1.13

| 05612 0.1681 008 | 05776 03125 0.42

SimpleTrack

Table A. Results on WOD validation split (.2). We mark the best
in red and the second in blue. For fair comparison, we list the
methods using the public CenterPoint [43] detection, * means the
numbers from our own implementations.

Methods ‘ AMOTAT AMOTP| MOTA? IDS |
AB3DMOT* [37] 0.598 0.771 0.537 1570
AB3DMOT [37] [44] 0.578 0.807 0.514 1275
Chiu etal. * [10] 0.624 0.655 0.542 1098
Chiu et al. [10] [44] 0.617 0.984 0.533 680
CenterPoint [43] 0.665 0.567 0.562 562
CBMOT [3] 0.675 0.591 0.583 494
MPN-Baseline [44] 0.593 0.832 0.514 1079
OGR3MOT [44] 0.693 0.627 0.602 262
SimpleTrack (2Hz) 0.687 0.573 0.592 519
SimpleTrack (10Hz) 0.696 0.547 0.602 405

Table B. Results on nuScenes validation set. We mark the best
in red and the second in blue. For fair comparison, we list the
methods using public CenterPoint [43] detection, the numbers
marked with * are our own implementations, the numbers marked
with [44] are from OGR3MOT [44].

nuScenes

1. Pre-process. We apply NMS according to IoU thresh-
old equal to 1/10. After NMS, all the remaining detec-
tions are kept as the input to 3D MOT algorithms.

2. Association. We adopt the same settings as on Waymo
Open Dataset.

3. Motion Model. The settings for our motion model is
identical to that on Waymo Open Dataset.

4. Life Cycle Management. We adopt the similar strat-
egy as the tracking algorithm in Center Point [43],
where the trackers start outputting upon the first as-
sociation, and are terminated after two continuous
misses.
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