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Abstract. Dynamic Epistemic Logic (DEL) can model complex infor-
mation scenarios in a way that appeals to logicians. However, existing
DEL implementations are ad-hoc, so we do not know how the framework
really performs. For this purpose, we want to hook up with the best
available model-checking and SAT techniques in computational logic. We
do this by first providing a bridge: a new faithful representation of DEL
models as so-called knowledge structures that allow for symbolic model
checking. For more complex epistemic change we introduce knowledge
transformers analogous to action models. Next, we show that we can now
solve well-known benchmark problems in epistemic scenarios much faster
than with existing methods for DEL. We also compare our approach to
model checking for temporal logics. Finally, we show that our method is
not just a matter of implementation, but that it raises significant issues
about logical representation and update.”

1 Introduction

We bring together two strains in the area of epistemic model checking. On one
side, there are many frameworks for symbolic model checking on interpreted
systems using temporal logics [31,38]. On the other hand, there are explicit model
checkers for variants of Dynamic Epistemic Logic (DEL) like DEMO [18] and the
optimized successor DEMO-S5 [19]. The latter provide superior usability as they
allow specification in dynamic languages directly, but inferior performance. This
reflects that the cradle of DEL was logic and philosophy, not computer science:
Models are just abstract mathematical objects whose size does not matter. To
actually implement model checking however, we need to think about concrete
data structures. Implementing the standard logical semantics means that we
explicitly spell out all states of a Kripke model. Already for toy examples like
the muddy children the number of states is exponential in the number of agents

" An earlier version [3] of this paper appeared in the proceedings of LORI-V. The main
additions and changes here are the generalization to non-S5 logics and a detailed
explanation of knowledge transformers.



and propositions. Solutions to this state explosion problem have been found for
temporal logics. The goal of our work is therefore to connect the two worlds of
symbolic model checking and DEL in order to gain new insights on both sides.

Existing work on model checking DEL mainly focuses on specific examples,
for example the Dining Cryptographers [35], the Sum and Product riddle [33]
or Russian Cards [15]. Given these specific approaches, a general approach
to symbolic model checking the full DEL language is desirable. A first step
is [38] which presents symbolic model checking for temporal logics of knowledge.
However, it does not cover announcements or other dynamics. The framework
here extends these ideas with dynamic operators and a twist on the semantics.

Our knowledge structures are similar in spirit to hypercubes from [32], but
of a different type: We do not use interpreted systems and temporal relations
are not part of our models. Hence also our language does not contain temporal
operators but primitives for epistemic events like announcements.

Related to our work is also [16] where DEL is translated into temporal
epistemic logics for which symbolic model checkers exist. However, this method
has not been implemented and the complexity and performance are not known.
We do not translate to a temporal logic but check DEL formulas directly.

The paper is structured as follows. In Section 2 we recall standard semantics
of DEL as in [14]. We then present knowledge structures in Section 3 and explain
them in detail using the famous Muddy Children example in Section 4. In Section 5
we discuss some details of the implementation and presents benchmark results
for various examples. Our main theoretical results are in Section 6 where we use
translations to prove that S5 Kripke models and knowledge structures are equally
expressive. Sections 7 and 8 extend our framework to action models from [2]
and non-S5 logics, respectively. Section 9 gives a conclusion and suggestions for
further research. An Appendix presents the implementation.

All source code of our model checker, technical documentation and a simple
web interface can be found at https://github.com/jrclogic/SMCDEL.

2 Dynamic Epistemic Logic on Kripke Models

Definition 1. Fiz a set of propositions V and a finite set of agents I. The DEL
language L(V') is given by

pu=plop|leAe| K| Capllele | [plae

wherep € V, 1 € I and A C I. We also use the abbreviations p V1 := —(—p A1)
and @ — P := =(p A —)). The boolean formulas are p :=p |~ | p A p.

The formula K;p is read as “agent ¢ knows ¢” while C'xp says that ¢ is
common knowledge among agents in A. The formula [¢)]¢ indicates that after a
public announcement of 1, ¢ holds. In contrast, [¢] ¢ says that after announcing
¥ to the agents in A, ¢ holds. If A = {i} for a single agent i € I, then we also
write ¢ instead of {i}. The standard semantics for £L(V) are given by means of
Kripke models as follows.
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Definition 2. A Kripke model for a set of agents I = {1,...,n} is a tuple
M= W,n,Kq,...,K,), where W is a set of worlds, 7 associates with each world
a truth assignment to the primitive propositions, so that w(w)(p) € {T, L} for
each world w and primitive proposition p, and K1, ...,K, are binary accessibility
relations on W. By convention, WM, IC{V‘ and ™ are used to refer to the
components of M. We omit the superscript M if it is clear from context. Finally,
let CX' be the transitive closure of Uica kM.

A pointed Kripke model is a pair (M, w) consisting of a Kripke model and a
world w € WM. A model M is called an S5 Kripke model iff, for every i, KM
is an equivalence relation. A model M is called finite iff WM is finite.

Definition 3. Semantics for L(V) on pointed Kripke models are given induc-
tively as follows.

(M, w) Epiff 7 (w)(p) = T.

M, w) E =g iff not (M,w) E ¢

M,w) E o ANy iff (M,w) E ¢ and (M, w) F ¢

M, w) E K iff for all w' € W, if wKMw', then (M,w') E .

M, w) E Cag iff for allw' € W, if wCY'w', then (M, w') E .

M, w) E [Y]e iff (M,w) E ¢ implies (MY, w) E ¢ where MY is a new
Kripke model defined by the set WM := {w € WM | (M,w) E ¢}, the
relations ICZ-Mw =KMn (W/WP)2 and the valuation 7" (w) == =M (w).

7. (M,w) E Y] @ iff (M,w) E ¢ implies that (Mﬁ,w) F ¢ where (M3, w)
is a new Kripke model defined by the same set of worlds WM = WM,
modified relations such that

A
—ifie A, let wlCle w' iff (i) wkMw' and (ii) (M, w) E ¢ iff (M, w') E ¥
A
— otherwise, let wIClM”’ w' iff wkMw'
M3 (w) = M (w).
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and the same valuation w

Definition 3 is standard and well-known, up to the last part which describes
a semi-private group announcement: [¢] ,¢ expresses that ¢ holds after it was
truthfully announced to the agents in A that v holds. We interpret it by cutting
the links between worlds that disagree on v for all agents in A. This announcement
is not secret: Other agents learn that agents in A learn whether 1. To illustrate
this, consider the following example.

Example 1. Alice has applied for a post-doc position and Bob knows this. A
messenger enters and gives Alice an envelope with the university logo on it. She
reads the letter and learns that she got the position. Bob however only learns
that Alice learns whether she got the position.

Let p stand for “Alice gets the position.” and consider the initial model M
depicted in Figure 1 where both Alice and Bob do not know whether p. We
formalize Alice reading the letter as [p] ., and model M?lice is the result of
this update. Again note that Bob himself does not learn whether p, but he does
learn that Alice learns whether p.



Alice [p] Atice
Bob ©

Fig. 1. Alice reading the letter as a semi-private announcement.

We include this semi-private announcement here already to show how our
symbolic representation in the next section captures more than just public
announcements. More complex epistemic actions are covered later in Section 7
and we generalize our methods to non-S5 phenomena in Section 8, including
truly private announcements in which the agents in A do not learn anything.

3 Knowledge Structures

While the preceding semantics is standard in logic, it cannot serve directly as an
input to current sophisticated model-checking techniques. For this purpose, in this
section we introduce a new format, knowledge structures. Their main advantage
is that also knowledge and results of announcements can be computed via purely
boolean operations. We first recapitulate some notions and abbreviations.
Given a set of propositional variables P, we identify a truth assignment over
P with a subset of P. We say a formula ¢ is a formula over P if each propositional
variable occurring in ¢ is in P. For convenience, we use the logical constants T
and | which are always true and always false, respectively. We also use F to
denote the usual satisfaction relation between a truth assignment and a formula.
We use substitution and quantification as follows. For any formula ¢ and ¢ €
{T, L}, and any propositional variable p, let @(%) denote the result of replacing
every p in ¢ by 9. For any A = {p1,...,pn}, let go(%) = w(%)(%) . (%’),
i.e. the result of substituting ¢ for all elements of A. We use Vpy to denote

¢ (2) A (2). For any A= {p1,...,pn}, let VAp :=Vp1Vps ... Vpue.

Definition 4. Suppose we have n agents. A knowledge structure is a tuple
F=(V,0,04,...,0,) where V is a finite set of propositional variables, 0 is a
boolean formula over V and for each agent i, O; CV.

Set V' is the vocabulary of F. Formula 0 is the state law of F. It determines
the set of states of F and may only contain boolean operators. The variables in
O; are called agent i’s observable variables. An assignment over V' that satisfies
0 is called a state of F. Any knowledge structure only has finitely many states.
Given a state s of F, we say that (F,s) is a scene and define the local state of
an agent i at s as sN O;.

To interpret common knowledge we use the following definitions. Given a
knowledge structure (V,0,01,...,0,) and a set of agents A, let E be the relation
on states of F defined by (s,t) € Ea iff there exists ani € A with sNO; = tNO;.
and let £ to denote the transitive closure of Ey.



Ezample 2. Consider the knowledge structure

F:=V={p,q},0 =p—q,01 = {p},02 = {q})

Here the vocabulary consists of two propositions. The state law is p — ¢, hence
the states of F are the three assignments satisfying that formula. To simplify
notation we write assignments as the set of propositions they make true. The
states of F are thus @, {¢} and {p, ¢}. Moreover, F describes two agents who each
observe one of the propositions. Intuitively, this can be understood as information
about knowing whether: Agent 1 knows whether p is true and agent 2 knows
whether ¢ is true. We also use this knowledge structure in Example 3 below and
compute an equivalent Kripke model in Example 6.

We now give alternative semantics for £(V') on knowledge structures. Defini-
tions 5 and 6 run in parallel, both proceeding by the structure of ¢.

Definition 5. Semantics for L(V) on scenes are defined inductively as follows.

(F,s)Epiff sEp.

(F,s) E - iff not (F,s)E ¢

(F,s)Eo Ay iff (F,s)E ¢ and (F,s)E¢
(F,s)

(F,s)

(F

»

,8) E K iff for allt of F, if sNO; =tNO;, then (F,t) E .

,8) E Cag iff for allt of F, if (s,t) € EX, then (F,t) E .

,8) E [W)e iff (F,s) E 1 implies (F¥,s) E ¢ where ||[¢||7 is given by
Definition 6 and

.%F“*:\?@Nt“
»

FY = (V,0 A |[Y]|7,01,...,0,)

7. (F,s) E[Y]Ap iff (F,s) E 1 implies (Ff,s U{py}) E © where py is a new
propositional variable, ||| = is a boolean formula given by Definition 6 and

Fi = (VU{py},0A (py < [¥)l5),05,...,05)

O; U {pw} ifie A
O; otherwise

where Of := {

If we have (F,s) E ¢ for all states s of F, then we say that ¢ is valid on F and
write F E ¢.

Before defining the boolean equivalents of formulas, we can already explain
some similarities and differences between Definitions 3 and 5. The semantics of the
boolean connectives are the same. For the knowledge operators, on Kripke models
we use an accessibility relation ;. On knowledge structures this is replaced with
the condition s N O; = t N O;, inducing an equivalence relation on the states. We
can already guess that knowledge structures encode S5 Kripke models.

Ezxample 3. Consider again the knowledge structure F from Example 2. We
can easily check that (F, @) E K;—p holds: The only states ¢ of F such that
@N0O; =tNO0; are & and {q}, and we have (F,@) E —p and (F,{q}) E



Similarly we can check that (F,{p, q}) F K1q: There is no other state ¢ #
{p, q} such that {p,q} N O; =t N O; because the state law § = p — ¢ rules out
{p}. Intuitively, even though agent 1 does not observe ¢, she observes p and the
state law p — ¢ implies that ¢ also must be true. In general, the state law of a
knowledge structure is always valid on it and therefore also common knowledge
among all agents. In this case: F = Cyy 23(p — q).

Our intuitive understanding of observational variables as knowing whether
can now also be stated formally: F F KipV K1—p and F F Kaq V Ko—gq.

The following definition of local boolean equivalents is the crucial ingredient
that enables symbolic model checking on our structures.

Definition 6. For any knowledge structure F = (V,0,01,...,0,) and any
formula ¢ we define its local boolean translation ||¢||z as follows.

For any primitive formula, let ||p||F := p.

For negation, let || =]z := —||¢||+.

For conjunction, let |1 A o] F = ||t1]lF A 2| #.

For knowledge, let || K| 7 :=Y(V\ O;)(0 = ||[¥]#).

For common knowledge, let ||[Cav||F = gfpA where A is the following
operator on boolean formulas and gfpA denotes its greatest fixed point:

Ale) = [¢llz A N\ VIV 00 = )

Cuds Lo o =

€A
6. For public announcements, let ||[Y)E|l7 = |¥|lx = II€llFe-
7. For group announcements, let ] 117 = 4]l — (IEl2)(%).

where F¥ and ]-"wA are as given by Definition 5.

Ezample 4. Using the structure F from Example 2 we have:

[K2(pV @)llz =V(V\O2)(0 — |lpVqlr)
=Vp((p—q) = (pVq)
=(T—=9=>(TVg)A(L =49 —(LVyg)
=(@—=>T)N(T =9
=q

One can check that indeed the formulas Ka(p V ¢) and ¢ are true at the same
states of F, namely {p,q} and {q}. Note that here we simplified the notation
and considered equivalent boolean formulas to be identical, so in particular we
do not consider succinctness of DEL formulas and their translations. This is in
line with the implementation presented in Section 5 where we will use binary
decision diagrams to represent boolean functions.

The next section contains more complex examples of this translation. Here it
remains to show that the boolean translations are indeed locally equivalent.

Theorem 1. Definition 6 preserves and reflects truth. That is, for any formula
¢ and any scene (F,s) we have that (F,s) E ¢ iff sE ||¢|=.



Proof. By induction on ¢. The base case for atomic propositions is immediate.
In the induction step, negation and conjunction are standard.

For the case of knowledge, remember how we defined boolean quantification
just before Definition 4 and note the following equivalences:

(]:78) E K{(ﬂ

Viof Fst.sNO; =tNO;: (F,t)E by Definition 5
Vtst.tEOand sNO; =tNO;: (F,t)F 1 by Definition 4
Vist.sNO;,=tNO0; and tE0:tE |||z by induction hypothesis
Vi s.t. sOOZ:tOOZtF9—> ||1)/JH]:

sEV(V\O:)(0 = [[¥] )

11eee

For the common knowledge case ¢ = C' a1, let A be the operator defined in
as in Definition 6. Also let A°(a) := a and A1 (a) := A(A¥(a)).

For left to right, suppose (F,s) E Cat. Note that A is monotone increasing
but there are only finitely many boolean functions over V. Hence there is some
m such that gfpA = A™. Therefore we can show s F gfpA by proving s E A™(T)
for any m. Suppose not, i.e. there is an m such that s ¥ A™(T). Then s ¥ ||[¢||
or s ¥ N;caV(V\ O;)(8 — A™ (T)). The first is excluded by the induction
hypothesis applied to (F, s) E ¢ which follows from (F,s) F Cat). Hence there
must be some i € A and an assignment sy such that s N O; = so N O; and
s3 ¥ 0 — A™7H(T). Then sy F 0, so s2 is a state of F, and sy ¥ A™~1(T).
Spelling this out we have sy ¥ [[¢] 7 or s3 £ N;cAV(V \ 0;)(0 — A™2(T)).
Again the first case cannot be: s is a state of F and by s; N O; = so N O; we
have (s,s2) € £€a. Thus (F,s) F Cat implies (F, s2) E ¢ which by induction
hypothesis gives so E ||¢]|#. Iterating this we get an Ea-chain s = s1,..., 5y
such that s;ix F ||[¢]|7 and s;px ¥ A™F(T) for all k € {1,...,m — 1}. In
particular s, ¥ A(T) and because s,, F ||[¢||z we get s ¥ T. Contradiction!
Hence s E A™(T) must hold for all m.

For right to left, suppose s = gfpA. Note that gfpA — A*(T) is valid and
thus we have s F A¥(T) for any k. Fix any state ¢ of F such that (s,t) € £. We
have to show (F,t) F 1. By definition of £} there is a chain s = s1,...,8, =1t
and there are agents i,...,%4,-1 € A such that for all k € {1,...,m — 1} we
have s N O;, = sg4+1 N O;,. Note s = 51 and s1 F A™(T), i.e. s1 F |9l A
Nica Y(V\O;)(0 — A™1(T)). This implies s; = V(V'\ O;,)(0 — A™ (T)). By
51N 0; = 85N 0;, we get so F 0 — A™~1(T). Because s; is a state of F we
have so F 6 and therefore sy F A™~1(T). Iterating this, we get s;,4 & A™ ()
for all k € {1,...,m —1}. In particular s,, E A(T) which implies s,, E ||¢| . By
$m = t and the induction hypothesis this shows (F,t) E 1.

For public announcements ¢ = [1)]¢ note the following equivalences:

(F,5) F )¢
<= (F,s)F 1 implies (F¥,s) E ¢ by Definition 5
<= sFE||¢||F implies s F ||¢]|7+ by induction hypothesis
— s lr - el




Similarly, for group announcements:
(J_'.,S) ': [¢]A§
< (F,s) F ¢ implies (.FwA, sU{py}) F & by Definition 5
<= sk ||¢||F implies sU {py} F Hngﬁ by induction hypothesis
< sF |9l implies s F ([[¢]|za) (%)
= sE[[Yllr = (Ellz2)(5)

O

We can now also explain the semantics for public and group announcements
given in Definition 5. First observe that public announcements only modify the
state law of the knowledge structure. Moreover, the new state law is always a
conjunction containing the previous one. Hence the set of states is restricted, just
like public announcements on Kripke models restrict the set of possible worlds.
Second, note that a group announcement adds a single observational variable
which is then linked to a formula evaluated on the previous structure. Hence the
number of states is constant, as in the Kripke semantics in Definition 3.

Both announcements use the local boolean equivalent of the announced
formula with respect to the original structure F, just like in Kripke semantics the
condition for copying worlds or cutting edges is about the original M and not the
model after the announcement. A well-known consequence of this hence also holds
about our knowledge structures: Truthful announcements can be unsuccessful
in the sense that after something is announced it is not true anymore. Famous
examples are Moore sentences of the form “It snows and you don’t know it”.

Theorem 1 is somewhat surprising as it “explains away” dynamic and epistemic
operators. But it does not make DEL any less expressive. Rather we can think of
the original formulas as universally usable — they capture an intended meaning
across different models or structures. Their local boolean equivalents given by
Definition 6 still do so across states, but only within a specific structure.

4 Example: Muddy Children

How does our new format do in practice? For this purpose, we consider some
well-known benchmarks in the epistemic agency literature. We start with how
their new representations looks like. After that, we go on to actual computa-
tional experiments. The famous Muddy Children example will illustrate how
announcements, both of propositional and of epistemic facts, work on knowledge
structures. An early version of this puzzle are the three ladies on a train in [30].
For a standard analysis with Kripke models, see [24, p. 24-30] or [14, p. 93-96].

Let p; stand for “child ¢ is muddy”. We consider the case of three children
I = {1,2,3} who are all muddy, i.e. the actual state is {p1,p2,p3}. At the
beginning the children do not have any information, hence the initial knowledge
structure Fy in Figure 2 has the state law 6y = T. The set of states of Fy is
therefore the full powerset of the vocabulary, i.e. P({p1,p2,ps}). All children can
observe whether the others are muddy but do not see their own face. This is



represented with observational variables: Agent 1 observes ps and ps3, etc. Now
the father says: “At least one of you is muddy.” This public announcement limits
the set of states by adding this statement to the state law. Note that it already
is a purely boolean statement, hence the formula is added as it is, leading to the
new knowledge structure F; as shown in Figure 2.

O1 = {p2,ps}
]_-0: V:{p17p27p3}7902T7 02:{p17p3}

O3 = {p1,p2}
O1 = {p2,p3}
Fi= |V ={p1,p2,p3},61 = (p1 VP2V p3), O2 = {p1,ps}
O3 = {p1,p2}

Fig. 2. Knowledge structures before and after the first announcement.

The father now asks “Do you know if you are muddy?” but none of the
children does. As it is common in the literature, we understand this as a public
announcement of “Nobody knows their own state.” A, (=(Kip; vV K;—p;)). This
is not a purely boolean formula, hence the public announcement is slightly more
complicated: Using Definition 6 and Theorem 1 we find a boolean formula which
on the current knowledge structure F; is equivalent to the announced formula.
Then this boolean equivalent is added to 6. We have

[K1p1l|z =VY(V\O1)(01 — llp1ll7)
=Vpi((p1 Vp2 Vp3) = p1)
=({(TVp2Vps) > T)A(LVp2Vps) — 1)
= =(p2 Vps3)

[K1=p1ll7 =YV \O1)(01 = [[-p1ll7)
=Vp1((p1 V p2 V p3) = —p1)
= ((T\/pg \/p3) — ﬂT) N ((L V p2 \/pg) — _\L)
=1
and analogous for Kops, Ko—pa, K3ps and K3—p3. These results make intuitive
sense: In our situation where all children are muddy, a child knows it is muddy

iff it sees that the other two children are clean. It can never know that it is clean
itself. The announced formula becomes

I A\ ((Kipi V Ki=pi)ll7 = N [I=(Kpi V Ki—pi) || 7
iel iel

~(=(p2 Vp3)) A=(=(p1 Vps)) A= (=(p1V p2))
= (p2 Vp3) A (p1Vp3)A(p1Vpz)

The announcement essentially says that at least two children are muddy. We
get a knowledge structure Fs with the following more restrictive state law 6.
Vocabulary and observational variables do not change, so we do not repeat them.

02 = (p1 V2 V3) A((p2 Vps) A(pr Vps) A(p1Vp2))



Now the same announcement (“Nobody knows their own state.”) is made again. It
is important that again we start with the epistemic formula A, ; (= (Kip;V K;—p;))
and compute an equivalent formula with respect to F5. Now by further boolean
reasoning we have that

|K1ipi|F, =Y(V \ O1)(02 — |p1]7,)
=Vp1((p1 V2 Vp3) A((p2 Vps) A (p1Vps)A(pr Vo)) = p1)
=((TVpaVps) A(p2Vp3) A(T Vp3) A(TVpa)) = T)
AN(LVp2Vps) A((p2 Vps) AN(LVps) A(LVp2)) — L)
TA((p2Vp3)A((p2Vps) ApsAp2) = L)
~((p2 V p3) A ((p2 V p3) Ap3 Ap2))
= —(p3s A p2)

|[Ki=p1|z, = V(V \ O1)(02 = |=p1]7,)

=Vp1(62 = —p1)

=Vp1((p1 Vp2 Vp3) A((p2Vp3) A(p1Vps)A(p1Vp2)) — —p1)

= ((T V pa \/pg) N ((pg \/p3) AN (T \/pg) A (T \/pg)) — —|T)
A((LVp2Vps) A((p2Vps) A(LVps)A(LVp2)) = L)

= (T/\((pg\/pg)/\—r/\—r) —)J_)
A((p2 V p3) A ((p2 Vps) A (p3) A(p2) = T)

=(p2Vps = L)AT

= =(p2 V p3)

which together gives us

[=(Kip1 V Ki=p)ll 7, = ~([[Kipil| 7 V[ Ki-p1| 7))
= =(=(p3 Ap2) V —(p2 V p3))
= (p3 Ap2) A (p2V p3)
=p3 A\ P2

and analogous formulas for children 2 and 3. Note that this admittedly tedious
calculation brings to light a detail of the puzzle: It would suffice to announce
“T do not know that I am muddy”, in contrast to “I do not know whether I am
muddy” which in general is more informative but not in this specific situation.

Finally, with respect to F5 we get the following boolean equivalent of the
announcement, essentially saying that everyone is muddy.

I A\ (=(Kipi V Ki=pi)ll 7, = (p3 Ap2) A (p3 Ap1) A (p2 Apr)
el
=p1 Ap2/A\p3

The resulting knowledge structure thus has the state law 63 = 02 A (p1 A pa A p3)
which is in fact equivalent to p; A p2 A p3 and marks the end of the story: The
only state left is the situation in which all three children are muddy. Moreover,
this is common knowledge among them because the only state is also the only
state reachable via £ in Definition 5. Alternatively, note that the fixed point
mentioned in Definition 6 in this case will be the same as 63.



5 Implementation and Benchmarks

The previous section showed how epistemic operators get replaced by booleans
when a new state law is computed. We could see that syntactically the state law
becomes more and more complex, but semantically the same boolean function
can be represented with a much shorter formula. This is where Binary Decision
Diagrams (BDDs) come in extremely handy. They were first presented in [7] and
provide an elegant data structure for boolean functions.

Definition 7. A binary decision diagram for a vocabulary V' is a directed acyclic
graph where non-terminal nodes are from V with two outgoing edges and terminal
nodes are T or L. A binary decision diagram is ordered according to a total
order < of V if for any edge from a node p to a node q we have p < q. A binary
decision diagram is reduced iff it does not contain two isomorphic subgraphs. By
the abbreviation BDD we always mean an ordered and reduced binary decision
diagram. A total order on the propositional variables uniquely determines the
BDD of a boolean formula, and we will use Bdd(y) for the BDD of ¢.

Ezample 5. Consider the boolean function given by the formula —(p; A—p2) — ps.
Figure 3 shows a full decision tree for this function and the BDD obtained by
identifying all isomorphic subgraphs.

Fig. 3. Full decision tree and BDD of —=(p1 A =p2) — p3

Note that we do not lose any information. To check whether a given assignment
satisfies the function represented by this BDD, we start at the root and follow the
outgoing arrows as follows: If the variable at the current node is true according
to the given assignment, follow the solid arrow, otherwise the dashed one. For
example we can check that {pi,p3} F =(p1 A ~p2) — p3 by following the right
arrow twice. Note that the BDD then does not even ask about the value of ps.
This reflects that we also have {p;} E =(p1 A =p2) — ps.

BDDs have several advantages. In many cases they are less redundant and thus
smaller than a corresponding truth table. Additionally, they can be manipulated
efficiently: Given BDDs of ¢ and ¥ we can compute the BDD of o Ay, ¢ — ¥



etc. Moreover, BDDs are canonical: Two formulas are equivalent iff their BDDs
are identical. In particular, once we have the BDD of a formula it is easy to check
whether it is a tautology or a contradiction: A formula is constant iff its BDD
consists of a single terminal node T or L. For an in-depth introduction, see [29,
p. 202-280]. To see how BDDs can be used to describe knowledge structures,
Figure 4 shows the BDDs of the state laws 6y to 63 from the Muddy Children
example in Section 4.

Fig. 4. Four BDDs representing the state laws 0 to 0.

Our new symbolic model checker SMCDEL works as follows: It takes two
inputs, a scene (F,s) where the state law is given as a BDD, and a DEL formula
©. To check whether ¢ holds at state s we first compute the equivalent boolean
formula ||¢|| 7 according to Definition 6 and then check the boolean satisfaction
s E |||l 7. Alternatively, we can check whether a formula is valid on F, i.e. true
at all states, by checking whether 8 — |||+ is a tautology. The full set of states
does not have to be generated and events are not executed explicitly.

Alternatively, the input can be a Kripke model and a formula to be checked.
SMCDEL will then first build an equivalent knowledge structure using the
construction given in Definition 9 below.

The model checker is implemented in Haskell and can be used similarly
to DEMO-S5 both in the interactive compiler ghci and compiled as a library.
Additionally we provide a simple text interface which is described in the Appendix.
To represent BDDs we use CacBDD [34] via the binding library HasCacBDD [26].
The program can also be used with CUDD [37] which provides very similar
performance. All of the following experiments and benchmarks were done using
64-bit Debian GNU /Linux 8 with kernel 3.16.0-4, GHC 7.10.3 and g++ 4.9 on
an Intel Core i3-2120 3.30 GHz processor and 4 GB of memory. To get precise
timing results we used the Haskell library Criterion [36].

Muddy Children

We compared the performance of this method to DEMO-S5, an explicit model
checker optimized for multi-agent S5 [19]. As a benchmark we used the question



“For m muddy children, how many announcements of »Nobody knows their
own state.« are needed until they do know their own state?”. We measured
how long each method takes to find and verify the correct answer (n — 1) by
iteratively evaluating DEL formulas saying that after this many announcements
nobody /everybody knows their own state. More details about the exact input
can be found in the appendix and the technical report accompanying SMCDEL.

Figure 5 shows the results on a logarithmic scale: Explicit model checking
with DEMO-S5 quickly becomes unfeasible whereas our symbolic model checker
SMCDEL deals with scenarios up to 40 agents in less than a second.

Note that this is a comparison of software and representation at the same time:
While DEMO-S5 uses a Kripke model, SMCDEL uses the knowledge structure
which we discussed in the previous section. The speedup could therefore arise at
different steps: First an initial knowledge structure or Kripke model is generated,
then it will be updated because the formula to be evaluated starts with an
announcement. Finally, a formula is evaluated on the result.

103 F T T T T E
E —e— DEMO-S5 i
10? E —m— Kripke-to-KnowStruct |3
) I —e— SMCDEL (CacBDD) | ]
10 E —+«— Number Triangle [27] | ]
10°
" I i
T 07 £
Q F E
Q [ |
% 1072 E
1074 b .
1075 b |
I I I I I I I I I 3

0 5 10 15 20 25 30 35 40

no. of children (all muddy)

Fig. 5. Benchmark Results on a logarithmic scale.

To test in which of the steps our new implementation is faster we also
benchmarked a variant of SMCDEL which takes a Kripke model as input. It
uses the translation from Definition 6 to construct an equivalent knowledge
structure and checks the given formula on that structure. The results are “Kripke-
to-KnowStruct” in Figure 5. We can see that the performance of this method is
worse than DEMO-S5 for small instances but becomes slightly better for nine or



more agents. This reveals that the standard semantics are slow because generation
of large Kripke models takes a long time and not the evaluation of updates and
formulas afterwards.

In some sense this is where theory and practice of model checking part ways,
because only the evaluation of formulas is considered part of “model checking”
itself, not the time to generate or read in the description of the model. In
particular, the computational complexity of model checking is measured with
the size of the model as a parameter [1]. But this size will depend heavily on
the representation: The Kripke model for situations like the Muddy Children
grows exponentially in the number of agents, so even if model checking takes time
polynomial in the size of the model, it is exponential in the number of agents. In
contrast, consider the size of a knowledge structure: For n Muddy Children the
initial model is given by ({p1,...,pn}, T,01 = {p1},...,0, = {pn}) which we
can write as a string of length O(n?). Moreover, the BDDs describing intermediate
state laws will maximally have ceiling( 3)2 many nodes.

We also implemented and benchmarked an alternative modeling of Muddy
Children given in [27]. Inspired by the number triangle, the authors use models
without names or indices for agents. Only two kinds of agents, the muddy and
non-muddy children, are distinguished. Moreover, instead of epistemic relations
the model contains observational-states which describe the perspective of a type
of agents. This yields a model for n agents with only 2n + 1 instead of 2" states
as shown in Figure 6 for the case n = 3.

0,2) (1,1) (2,0)

(
SN SN S

(0,3) (1,2) (2,1) (3,0)

Fig. 6. Triangle model for Muddy Children.

However, [27] does not provide formal syntax and semantics and it is not
possible to evaluate standard DEL on triangle models. For our implementation
we chose the language ¢ ::= —p | 9 A p | Q | K, | K where Q is a generalized
quantifier, b is a bit for muddy or non-muddy, K; means that all agents of kind b
know their own state and K, means that all agents of kind b do not know their
own state. Note that the knowledge operators do not take any formula arguments
and their semantics start with a universal quantifier. This also explains why
K, is needed to express the announcement “Nobody knows their own state”. In
contrast, —K;, would mean that there is at least one agent not knowing their
own state. Also note that updates need to be interpreted differently: The first
announcement “At least one of you is muddy.” is a quantifier and removes the
state (0, 3) in Figure 6. After that the announcements of “Nobody knows their
own state.” are given by Ky A K, and will remove observational states in the
upper layer. For more details, see the SMCDEL documentation.



The performance of this number triangle model is impressive. However, the
modeling is very specific to the Muddy Children, while DEMO-S5 and SMCDEL
are general DEL model checkers. Similar abstractions and concise models might
also be found for other examples discussed in this section, but they need to be
constructed for each specific case. Still, we see the results as a motivation to
study abstraction methods such as agent kinds in the future.

Muddy Children has also been used to benchmark MCMAS [31] but the
formula checked there concerns the correctness of behavior and not how many
rounds are needed. Moreover, the interpreted system semantics of model checkers
like MCMAS are very different from DEL. Still, connections between DEL and
temporal logics have been studied and translations are available [5,16]. The next
example is more suited for a direct comparison with MCMAS.

The Dining Cryptographers

A scenario which fits nicely into both frameworks is the dining cryptographers
protocol described in [9]: Three cryptographers go out to have diner. After a
delicious meal the waiter tells them that the bill has already been paid. The
cryptographers know that either it was one of them or the NSA. They want to
find which of the two is the case but also respect the wish to stay anonymous: if
one of them paid they do not want that person to be revealed.

To accomplish this, they can use the following protocol: For every pair of
cryptographers a coin is flipped in such a way (e.g. under the table) that only
those two see the result. Then they announce whether the two coins they saw
were different or the same. But, there is an exception: If one of them paid,
then this person says the opposite. After these announcements are made, the
cryptographers can infer that the NSA paid iff the number of people saying that
they saw the same result on both coins is even. More formally, they use boolean
variables and the XOR function. For details how to model this protocol using
DEL, see [21].

The statement “If cryptographer 1 did not pay the bill, then after the an-
nouncements are made, he knows that no cryptographers paid, or that someone
paid, but in this case he does not know who did.” is also checked in [31]. Following
the translation ideas in [5,16] we can formalize the same statement as

n n

—p1 = WKL (/\ =pi) v (Kl(_\/ pi) A N\ (K1)

=1 1=2

where p; says that agent ¢ paid and 1 is the announcement.

Table 1 shows how many propositions we need to model the situation for n
agents and how long SMCDEL needs to run to check the above statement. In
particular this is faster than the equivalent computations using temporal logics
and the model checker MCMAS which takes about 5 seconds for 40 agents [31,
Tables 4]. Figure 17 in the appendix lists the input for SMCDEL for the case of
three agents.



n Propositions Seconds

10 56 0.0017
20 211 0.0092
40 821 0.0739
80 3241 0.9751
120 7261 3.2806
160 12881 8.1046

Table 1. Results for n Dining Cryptographers.

Russian Cards

As another case study we applied our symbolic model checker to the Russian
Cards Problem. One of its first logical analyses is [13] and the problem has since
gained notable attention as an intuitive example of information-theoretically (in
contrast to computationally) secure cryptography [12,17].

The basic version of the problem is this: Seven cards, enumerated from 0 to
6, are distributed between Anne, Bob and Crow such that Anne and Bob both
receive three cards and Crow one card. It is common knowledge which cards
exist and how many cards each agent has. Everyone knows their own but not the
others’ cards. The goal of Anne and Bob now is to learn each others cards without
Crow learning them. They can only communicate via public announcements.

Many different solutions exist but here we will focus on the so-called five-hands
protocols (and their extensions with six or seven hands): First Anne makes an
announcement of the form “My hand is one of these: ...”. If her hand is 012 she
could for example take the set {012,034, 056,135,146, 236}. It can be checked
that this announcement does not tell Crow anything, independent of which card
it has. In contrast, Bob will be able to rule out all but one of the hands in the
list depending on his own hand. Hence the second and last step of the protocol
is an announcement by Bob about which card Crow has. For example, if Bob’s
hand is 345 he would finish the protocol with “Crow has card 6.”.

Verifying this protocol for the fixed deal 012|345|6 with our symbolic model
checker takes less than a second. Compared to that, a DEMO implementation [15]
needs 4 seconds to check one protocol.

Moreover, checking multiple protocols in a row does not take much longer
because the BDD package caches results. We can not just verify but also find
all 5/6/7-hands protocols, using the following combination of manual reasoning
and brute-force. By Proposition 32 in [13] safe announcements from Anne never
contain “crossing” hands, i.e. two hands with multiple card in common. If we also
assume that the hands are lexicographically ordered, this leaves us with 1290
possible lists of five, six or seven hands of three cards. Only some of them are
safe announcements which can be used by Anne. We can find them by checking
all the corresponding 1290 formulas. Our model checker can filter out the 102
safe announcements within 1.6 seconds, generating and verifying the same list as
in [13] where it was fully manually generated.



Going one step further, suppose we do not know anything like Proposition 32
from [13] that allows us to restrict the search space. This perspective was also
adopted in [23], turning the puzzle into an epistemic planning problem. If we only
fix that Alice will announce five hands, including her own which w.l.o.g. is 012,
then she has to pick four other hands of three cards each. The number of possible
actions is then 46376. It takes our model checker about 160 seconds to find the
60 safe announcements among them. Finally, if we also relax the condition that
Bob will answer with “Crow has card 6” but instead consider “Crow has card
n” for any card n, the search space grows by a factor of 7 to 324632. It now
takes around 20 minutes to find the solutions. Note however, that none of the
additional plans are successful, hence the same 60 plans are generated.

Sum and Product

Maybe the most famous example in the DEL literature after the Muddy Children
is the Sum and Product puzzle |25, translated from Dutch]:

A says to S and P: “I chose two numbers x, y such that 1 <z <y and
z+y < 100. I will tell s = x 4+ y to S alone, and p = zy to P alone.
These messages will stay secret. But you should try to calculate the pair
(z,v)”. He does as announced. Now follows this conversation: P says: “I
do not know it.” S says: “I knew that.” P says: “Now I know it.” S says:
“No I also know it.” Determine the pair (z,y).

Our model checker can also solve this classic and we can improve upon the
results of existing implementations. However, this comes with a trade-off in
convenience: In DEMO-S5 [19] Kripke models are parameterized with a type.
This allows the user to encode information in the states directly. For example,
the states in a model for Sum and Product can be pairs of integers.

In contrast, because of the underlying BDD representation our model has to
be completely propositional. In the future we plan to implement typed Kripke
models using similar encodings like the following manual translation.

To represent numbers we use binary encodings for z, y, s := x+y and p := xx*y.
Let ceiling(-) denote the smallest natural number not less than the argument. We
need ceiling(log, N) propositions for every variable that should take values up to
N. For example, to represent the possible values of x € {2,...,100} we can use
P1,...,p7. The statement p = 5 is then encoded as p; Apa Aps ApsA—ps Apg A—pr.
Given this encoding we have propositional formulas for £ = n etc. and can use
them to formalize the puzzle as usual [14, Section 4.11]. The state law for Sum
and Product is a big disjunction over all possible pairs of = and y with the given
restrictions. It is here where we ensure that s and p are actually the sum and the
product of n and m:

\/{x:n/\y:m/\s:n—l-m/\p:n-m|2§n<m§100,n+m§100}

To let the agents S and P know the values of s and p respectively, we define
the observational variables Og := {s1,...,s7} and Op := {p1,...,p7}. Now we



can use the usual formulas to say that an agent knows a variable and that the
statements of the dialogue can be truthfully announced. Our model checker can
then be asked in which states the DEL formula characterizing a solution holds.
It takes less than two seconds to find the unique solution. In particular this
is faster than a previous implementation in [33] which is also based on BDDs.
However, it is still slower than an optimized version of explicit model checking
with DEMO-S5 which can do it in less than one second. This is probably due to
a well-known problem already mentioned in [7]: BDD representations of products
tend to be larger. Our program thus spends most of its time to build the BDD
of the state law including the restriction p = n - m before it can actually check
any given formula.

6 Equivalence of the two Semantics

Having shown the computational advantage of our new modeling, we now look
more deeply into the foundations of what we have been doing. For a start, we
show that knowledge structures and standard models for DEL are equivalent
from a semantic point of view. Lemma 1 gives us a canonical way to show
that a knowledge structure and an S5 Kripke model satisfy the same formulas.
Theorems 2 and 3 say that such equivalent models and structures can always be
found. These translations are also implemented in SMCDEL.

Lemma 1. Suppose we have a knowledge structure F = (V,0,04,...,0,) and a
finite S5 Kripke model M = (W, w, K1, ...,K,) with a set of primitive propositions
U C V. Furthermore, suppose we have a function g : W — P(V') such that

C1 For all wy,we € W, and all i such that 1 < i < n, we have that g(wi)NO; =
g(wa) NO; iff w1 Kiws.

C2 For allw € W and p € U, we have that p € g(w) iff m(w)(p) =T.

C3 For every s CV, s is a state of F iff s = g(w) for some w € W.

Then, for every L(U)-formula ¢ we have (F,g(w)) E ¢ iff (M, w) E ¢.

Before we dive into the proof, let us step back a bit to see that conditions
C1 to C3 describe a special case of something well-known, namely a p-morphism
between the model M and a model encoded by the structure F which we will make
precise in Definition 8 below. The mathematically reader might thus already be
convinced by general invariance results [6, §2.1] and skip the following induction.

Proof. We proceed by induction on ¢. First consider the base case when ¢ is a
primitive proposition, say p. Then, by condition C2, we have that (F,g(w)) Ep
iff p € g(w) iff 7(w)(p) =T iff (M, w) Ep.

Now suppose that ¢ is not a primitive proposition and as an induction
hypothesis the claim holds for every formula of lower complexity than ¢. We
distinguish five cases:

1. ¢ is of form =) or ¥ A £. Definitions 3 and 5 do the same recursion for
negations and conjunctions, hence this follows by the induction hypothesis.



2. ¢ is of form K;v. By Definition 5, we have (F,g(w)) E Ko iff (F,s) E ¢
for all states s of F with g(w) N O; = s N O,. By C3 this is equivalent to
having (F, g(w')) E ¢ for all w’ € W with g(w) N O; = g(w') N O;, which by
C1 is equivalent to (F, g(w')) E ¢ for all w’ € W with wK;w’. Now by the
induction hypothesis, this is equivalent to (M, w’) F ¢ for all w’ € W with
wiC;w’ which is exactly (M, w) E K;4 by Definition 3.

3. @ is of form Cx. Recall that, for arbitrary states s and t of F, (s,t) € Ea
iff there exists an i € A with sNO; =t N O;. By C1, for all wy,ws € W,

(g(w1), g(we)) € Ea iff (w1, ws) € U R;.
i€EA
As &, is the transitive closure of &y, , and C% is that of (J;c o R, by C3
we have for all wy,ws € W that

(9(w1), g(w2)) € E4 iff (w1, ws) € CX

We now claim that (F,g(w)) E Cat iff (M,w) E Ca®. On one hand,
(Fum, g(w)) E Cat iff for all states s of Far with (g(w), s) € EX, (Fum,s) E .
By C3, we have that (Far, g(w)) E Catp iff for all w’ € W with (g(w), g(w')) €
&%. On the other hand, (M, w) F Cat iff for all w’ € W with (w,w’) € CX.
Hence the claim follows by the above discussion and the induction hypothesis.

4. ¢ is of form [¢p]€. By Definition 3, we have that (M, w) F [¢]€ iff (M, w) E 4
implies (MY, w) E &, and by Definition 5 we have that (F, g(w)) F [1]¢, iff
(F,g(w)) E ¢ implies (F¥, g(w)) E & As (M, w) E  iff (F, g(w)) E 1 by the
induction hypothesis, it suffices to prove that (MY, w) F ¢ iff (F¥, g(w)) E €.
Let ¢’ be the restriction of g to WM = {weW | (M,w) Ey}. Note that
because g fulfills the universal conditions C1 and C2, they must also hold
for ¢’ with respect to the restricted set WMY. To show C3 for g, for left
to right suppose s C V is a state of F¥. Then s is also a state of F and by
condition C3 for g, there is a w € W such that s = g(w). Moreover, F, s E 9
and therefore by the induction hypothesis (M, w) E ¥. Hence w € WM
and we also have ¢'(w) = s. For right to left suppose ¢'(w) = s for some
w e WM and some s C V. Then (M, w) E ¢ and s is a state of F because
g(w) = ¢g'(w) = s. Therefore by the induction hypothesis F, s F . Hence
s E ||1|| 7 which implies that s is also a state of F'¥. Together, ¢ fulfills all
three conditions and by the induction hypothesis we get that (MY, w) F & iff
(F*, g(w)) F €

5. ¢ is of form [¢] ,&. By Definition 3 and 5, we have that (M, w) & [¢] & iff
(M, w) o implies (M2, w) E €, and (F, g(w)) £ [1} 1€ iff (F, g(w)) F
implies (.7-"1f7 {pp} Ug(w)) E & As (M, w) E ¢ iff (F, g(w)) F ¢ by induction
hypothesis, it suffices to prove that (M2, w) E € iff (fwA, {py}Ug(w)) E . Let
g WM P(V U {py}) be defined by ¢'(w) := {py} U g(w) if (M, w) E ¢
and ¢'(w) := g(w) otherwise. It remains to show that ¢’ also fulfills C1 to C3.
For Cl,Atake any wi,wg € WM = WM and any 4. As in Definitions 3 and 5

let IC;¥ and O be the epistemic relations and observational variables after



the announcement and note the following equivalences where step © follows
from C1 with respect to g:

g'(w1) NOF = g'(wa) N OF
(g(wr) U{py | M, w1 E9}) N (O;U{py | i€ A})

= (9(w2) U{py | M,wz F¥}) N (0; U{py | i € A})
g(w1) NO; =g(we) NO; and i € A = (M,wy F ¢ iff M,ws E )

wiKMws and i € A = (M, w; E ¢ iff M,wq F 1)
A

M
wllCi v wWo

[ S

To show C2, note that W, U and 7 do not change in the group announcement
part of Definition 3. Thus C2 for ¢’ follows from C2 for g.

For C3, take any s C V U {py}. To show left to right, suppose s is a state
of ff. Then s F 0 A (py < ||¥|l7). In particular s F 6, so t := sNV
is a state of F. Hence by C3 for g there is a w such that g(w) = t. We
consider two cases. First, suppose py € s. Then by s F (py < ||¢]|F) we
have s F ||¢||#. Note that p, does not occur in ||¢||#, hence ¢t E ||¢| .
By Theorem 1 we have F,g(w) E ¢ and by induction hypothesis we get
(M, w) E 9. Hence by definition of ¢ above we have py, € ¢’'(w) and therefore
g (w) = g(w) U{py} = s. Second, suppose py, € s. Then by s F (py <> ||[¥]|F)
we have s ¥ ||¢|| 7. Note that p, does not occur in ||¢|| 7, hence t ¥ ||¢] #.
By Theorem 1 we have F,g(w) ¥ ¢ and by induction hypothesis we get
(M, w) ¥ 1. Hence by definition of ¢ above we have py & ¢’'(w) and therefore
g (w) = g(w) = s. In both cases we have ¢'(w) = s.

For right to left, suppose ¢’(w) = s for some w. By C3 for g we have that
t := g(w) is a state of F, i.e. t F 0. Again we consider two cases. First,
suppose py € s. Then by definition of ¢ we have M, w & ¢. Now by induction
hypothesis we also have (F, g(w)) E 1. By Theorem 1 we get g(w) E [|9]| #.
Note that py, does not occur in ||| . Hence we also have s E ||| 7. Second,
suppose py & s. Then by definition of ¢’ we have M, w ¥ . Now by induction
hypothesis we also have (F, g(w)) ¥ 1. By Theorem 1 we get g(w) ¥ ||¢|| .
Note that py does not occur in ||¢|| 7. Hence we also have s ¥ ||¢|| 7. In both
cases we have s E 0 A (py <> ||¢]| ), i.e. s is a state of ]-'f.

Finally, by the induction hypothesis we have (Mﬁ, w) F & iff (]-'wA, g (w)) EE

iff (F*, {py} Ug(w)) E €. i

The following definition and theorem show that for every knowledge structure

there is an equivalent Kripke model.
Definition 8. For any F = (V,0,04,...,0,), we define the Kripke model
M(F) := (W, m,Kq,...,Ky) as follows

1. W is the set of all states of F,
2. for each w € W, let the assignment 7(w) be w itself and
3. for each agent i and all v,w € W, let vl;w iff vN Oy = wN O;.

Theorem 2. For any knowledge structure F, any state s of F, and any ¢ we
have (F,s) E o iff (M(F),s) E p.



Proof. By Lemma 1 using the identity function as g. O

Ezample 6. We can apply Definition 8 to F = ({p,q},p — ¢,{p},{¢}) from
Example 2. The result is an equivalent Kripke model shown in Figure 7.

@ ! {a} 2 {r,q}
(o )(m)

Fig. 7. Kripke model M(F) equivalent to F from Example 2.

)

Vice versa, for any S5 Kripke model we can find an equivalent knowledge struc-
ture. The essential idea is to add propositions as observational variables to encode
the relations of each agent. To obtain a simple knowledge structure we should
add as few propositions as possible. The method below adds ), ; ceiling(log, ;)
propositions where k; is the number of K;-equivalence classes. This could be
further improved if one were to find a general way of using the propositions
already present in the Kripke model as observational variables directly.

Definition 9. For any S5 model M = (W, n,Kq,...,K,) with some set of
primitive propositions U we define a knowledge structure F(M) as follows. For
each agent i, write v; 1,...,7%ik; for the equivalence classes given by K; and let
l; := ceiling(logy k;). Let O; be a set of l; many fresh propositions. This yields the
sets of observational variables O1, ..., Oy, all disjoint to each other. If agent i has
a total relation, i.e. only one equivalence class, then we have O; = @. Enumerate
ki many subsets of O; as O, ,,...,0n,, and define g; : W — P(O;) by gi(w) =
O, (w) where v;(w) is the K;-equivalence class of w. Let V := U UJyc;<,, O
and define g : W — P(V) by

g(w):={veU|n(w)(v)=Tru (J gi(w)

0<i<n

Finally, let F(M) := (V,0p,01,...,0,) using

O ::\/{g(w)EV\wEW}

where T abbreviates a formula saying that out of the propositions in the second
set exactly those in the first are true: AC B:= NAANA{-p|pe B\ A}.

Note that the idea here is to represent the state law 6;; as a BDD and not
as a complex formula. Thereby we obtain a compact representation for many
Kripke models, especially situations like the muddy children or blissful ignorance.
However, in the worst case a BDD can have exponential size in the number of
variables [7]. Hence Bdd(65;) might be of size exponential in |V].

Theorem 3. For any finite pointed S5 Kripke model (M, w) and every formula
@, we have that (M, w) E ¢ iff (F(M),g(w)) E .



Proof. We have to check that Lemma 1 applies to Definition 9. To show C1,
take any wi,ws € W and i € {1,...,n}. Note that g(w1) N O; = g(w1) N O;
and g(wq) N O; = g;(wa) N O; because the observational variables introduced in
Definition 9 are disjoint sets of fresh propositions. By definition of g; we have
that g;(w;1) and g;(ws) are the same subset of O; iff w; and wy are in the same
K;-equivalence class. This shows that g(w;) N O; = g(ws) N Oy iff w Kyws.

For C2, take any w € W and any v € U. Note that U is the original set of
atomic propositions and therefore does not contain observational variables. Hence
by definition of g we have v € g(w) iff m(w)(v) =T.

For the “if” part of C3: If s = g(w) for some w € W, then by the definition of
01, we have that g(w) E 0) and hence g(w) is a state of F(M). For the “only
if” part, suppose s is a state of F(M). Then s E 07, hence it must satisfy one
of the disjuncts and there must be a w € W such that s F g(w) C V. Now by
definition of C we have s = g(w). Now the theorem follows from Lemma 1. O

Ezample 7. Consider the pointed Kripke model (M, w) in Figure 8. Agent 2
knows that p, agent 1 does not know that p. Moreover, agent 1 does not even
know whether agent 2 knows whether p.

1
LAY M
1 M, wi F =K1 (K2p V K2-p)
2 M,w1 = ﬁK1ﬁ(K2pV Kgﬁp)

Fig. 8. Pointed Kripke model (M, w1) and some facts about it.

Now let us see how this knowledge and meta-knowledge get encoded sym-
bolically. This direction is more difficult than going from a knowledge structure
to a Kripke model as in Example 6, because here the worlds are not uniquely
identified by valuations: 7(w;) = 7(wz). Applying Definition 9 therefore means
that we add one fresh proposition Oy := {q} to distinguish the two epistemic
equivalence classes {w1} and {ws, w3} of agent 2. For example, let go(w1) := {q}
and ga(w2) = g2(ws3) := @. Then we have g(w1) = {p,q}, g(w2) = {p} and
g(w1) = @. Now we can compute the state law, a boolean formula over the
vocabulary V' = {p, ¢}, as follows:

On = (g9(w1) EV)V (g(wz2) EV)V (g(ws) EV)
={p.d} E{p,a}) v{p} E{p.q¢}) V(@ E{p,q})
=@Aa)V(PA=QV(-pA—q)
=q—p
The equivalent knowledge structure is thus
FM) = (V"= {p,a},0m = q— p,01 = 3,05 = {q})
and the scene (F(M),{p,q}) is equivalent to (M, w).



7 Generalization to Action Models

What we have seen is how the two ways of modeling in this paper, though
computationally different, are semantically equivalent. This leads us to consider
how their interplay will work in more complex settings. The obvious direction to
probe this is the area where DEL unleashes its full power: We now show how
knowledge structures can be generalized to action models. Action models were
first described in [2] and we do not repeat the basic definitions here but refer
to [14] for a textbook treatment.

Definition 10. An action model for a given vocabulary V and set of agents
I={1,...,n} is a tuple A = (A, pre,Ry,...,R,) where A is a set of so-called
action points, pre : A — L(V) assigns to each action point a formula called its
precondition and Ry,..., R, are binary relations on A. If all the relations are
equivalence relations we call A an S5 action model.

Given a Kripke model and an action model we define their product update as
Mx A=W o' Ky,...,Kp,) where W' := {(w,a) € W x A | M,wE pre(a)},
' ((w, @) := w(w) and (v, ) K(w, B) iff vCw and aR;B.

For any a € A we call (A, a) a pointed (55) action model.

Ezample 8. Figure 9 shows a product update describing Example 1. The pointed
S5 action model with two events announces p to agent 2 but not to agent 1. Still,
agent 1 learns that 2 might have learned that p.

A Mx A
«
M 7
1 1
1 1

2
B
?ﬁp

Fig. 9. Semi-Private announcement as a Product Update.

What action models are to Kripke models, the following knowledge trans-
formers are to knowledge structures.

Definition 11. A knowledge transformer for a given vocabulary V and set of
agents I ={1,...,n} is a tuple X = (V*T,07,04,...,0,) where VT is a set of
atomic propositions such that VNV ™' = &, 07 is a possibly epistemic formula from
LVUVT) and O; C VT for all agents i. An event is a knowledge transformer
together with a subset x C V¥, written as (X, ).



The knowledge transformation of a knowledge structure F = (V,0,04,...,0,)
with a knowledge transformer X = (V*,0%,07,...,0F) for V is defined by:

FxX:=VUvVr on|ot|01U0f,...,0,U0;)
Given a scene (F,s) and an event (X, x) we define (F, s) x (X, x) := (FxX,sUx).

Here 07 is not restricted to be a boolean formula, just like preconditions of
action models can be arbitrary formulas. Still, applying a knowledge transformer
to a knowledge structure should again yield a knowledge structure with a boolean
formula as the new state law. Hence, in Definition 11 we not just take the
conjunction of § and 0 but first localize 0 to ||#T|z. This formula will be
equivalent on the previous, but not necessarily on the new structure.

For example, if the announced formula contains a K; operator, then we rewrite
it by quantifying over V' \ O;, not over VUV ™\ O; UO;" as one might first think.
The latter would yield boolean equivalents with respect to F x X whereas the
former is with respect to F. Compare this to the product update in Definition 10
where the preconditions are also evaluated on the model before the update.

The two kinds of announcements from above fit into the general framework
of knowledge transformers as follows.

Ezample 9. The public announcement of ¢ is the event ((&, ¢, &, ..., d), ). The
semi-private announcement of ¢ to a group of agents A is given by (({p,},p, <>
0, 0F,...,05),{p,}) where O = {p,} if i € A and O] = & otherwise.

An obvious question about knowledge transformers is how they relate to
action models, i.e. whether they describe the same or a different class of events.
The answer is the same as for the relation between Kripke models and knowledge
structures: For any S5 action model there is an equivalent transformer and
vice versa. We can make this precise as follows, using very similar ideas as for
Definitions 8 and 9 and then using Lemma 1.

Definition 12. For any Knowledge Transformer X = (V*,07,0F,...,0%) we
define an S5 action model Act(X) as follows. First, let the set of actions be A :=
P(V*). Second, for any two actions a, 8 € A, let aR; B iff aNOf = BNO; . Third,

for any o, let pre(a) := 07 (&) (Vi\a). Finally, let Act(X) := (A, (R;);c;, pre).

Definition 13. The function Trf maps an S5 action model A = (A, (R;),c;, pre)
to a transformer as follows. Let P be a finite set of fresh propositions such that
there is an injective labeling function g : A — P(P) and let

& := \{(g(a) C P) — pre(a) |a € A}

where C is the “out of” abbreviation from Definition 9. Now, for each i: Write
A/R; for the set of equivalence classes induced by R;. Let O be a finite set of
fresh propositions such that there is an injective g; : A/R; — P(O]) and let

b; = /\ {(gi(a) C 0;) — (\/(g(a) c P))

aca

o € A/Rl}



Finally, define Trf(A) := (VT,07,07,...,0;}) where VT := PUlJ

" P; and
9+ =PA /\iEI @Z

iel

In contrast to the translation in Definition 9 where 6, could be represented as
a BDD, here we can not do so with §T as it might contain non-boolean operators
in @. Still, before taking the last conjunction we can compute a smaller equivalent,
of the purely boolean A, ; ®;.

Ezample 10. We can translate the product update from Example 8 to a knowledge
transformation as follows. First note that in M both agents have a total relation,
hence we do not have to add observational variables. The equivalent knowledge
structure is just F(M) = ({p}, T, 9, D). Now we use Definition 13 to obtain
Trf(A). Choose the set P = {q} where g is fresh and label the events of A by
g(a) := {q} and ¢g(B) := @. We then get ® := (¢ — p) A (—g — —p) = q < p.
Agent 1 also has a total relation in A, so we can choose Oi" =g and g1(a) :=
g91(8) == @. Note that @ C @ = T. Hence ¢; = (T — (¢V —q)) = T. For
agent 2 we need two labels, so let OF := {r} where r is fresh, go(a) := {r} and
92(B8) := @. Then we get $3 = (r = q) A (-r = —q) = r < ¢. Putting it all
together we get 07 = (¢ +> p) A (r + ¢) and thereby this transformer:

Tr(A) = ({g, 7}, ((a = p) A (r > q), 2, {r})
Finally, we can calculate the knowledge transformation F(M) x Trf(A):

({p}7—|—7 g’ g)
x ({g;r}, (@<= p) A (r < q)), 2, {r})
={p.a,r}, (g p)A(r+q),2,{r})

Observe that 81 makes ¢ and p equivalent which makes this transformer somewhat
redundant. As we mentioned already in Example 9, the semi-private announce-
ment is given by a simpler transformer using only one fresh proposition, in this
case ({¢}, (¢ & p),9,{q}). In general however, the distinction between those
propositions linked to preconditions and those describing the observation is
needed to translate more complex action models to knowledge transformers.

It remains to show that our definitions to go back and forth between action
models and knowledge transformers are truthful in general.

Theorem 4. For any scene (F,s), any event (X,z) and any formula ¢ over
the vocabulary of F we have:

(F,s) x (X,2) Fp <= (M(F) x Act(X)), (s,z) F ¢

For any pointed S5 Kripke model (M,w), any pointed S5 action model (A, o)
and any formula ¢ over the vocabulary of M we have:

Mx A (w,a) Fp <= F(M) x Trf(A), (gm(w) Uga(a)) EF e

where gaq is from the construction of F(M) in Definition 8 and g4 is from the
construction of Trf(A) in Definition 13.



Proof. We use Lemma 1. For the first part, g needs to map worlds of M(F) x
Act(X) to states of F x X. The former are pairs (s,z) € P(V) x P(VT), hence we
define g(s, z) := sUz. For the second part, g should map worlds of M x A to states
of F(M) x Trf(.A). Hence let g(w, o) := gar(w) U ga(e). It is straightforward to
check C1 to C3 for both functions. a

To conclude this section, note that extensions of £(V') with dynamic operators
for events still provide the advantage that all formulas have a local boolean
equivalent. One only has to add a clause like this to Definition 6:

1%, zlellz = 116777 = llo*llxx

where 07" := 6% (L) (@) and * := ¢ (%) (Vj_\z).

8 Generalization to non-S5 models

So far we only considered a “hard” notion of knowledge, characterized by the
modal logic S5. Many other modalities and their dynamics can be formalized
using DEL [14]. Belief for example is sometimes modeled using weaker modal
logics with more general relational semantics using arbitrary relations. In this
section we extend our symbolic framework to non-S5 models. To emphasize that
the underlying relations do not have to be equivalence relations and we are no
longer talking about knowledge, we now write R; instead of IC; for the epistemic
relations in a general Kripke model and [J; instead of K; for the modal operator
in our language. Moreover, we change the semantics of group announcements
[¢] 5 to be fully private, as the following definition and example show.

Definition 14. Semantics for DEL on general Kripke models are defined induc-
tively as in Definition 3 with the following changes.

1. For knowledge:
(M, s) ETip iff forallw' € W If wRw' then (M,w') E .

2. For simplicity we do not interpret common knowledge on non-S5 models.
3. Public announcements are interpreted in the same way, t.e. restricting W.
4. Group announcements are now interpreted privately as follows: (M, w) E
W] @ iff (M,w) E 9 implies that (Mf, (w,1)) E ¢ where M$ is a new
Kripke model defined by
— WMP = {(w,0) |we W}U{(w,1) |weW and (M,w) F ¥}

R o ) i o Db 1€
(w, )R (w', ') iff wRG w and{b’;&lotherwise

— and M7 (w,b) == 7M™ (w)
Ezxample 11. We modify Example 1: Suppose Alice reads the letter in private,

such that Bob does not notice that she read it. This can be modeled as a private
announcement of p to Alice as shown in Figure 10. Note that we now use directed



arrows for the epistemic accessibility relations as they now longer have to be
equivalences.

Alice Alice Alice Alice

Alice [P) Alice Alice
Bob

Bob Bob Bob Bob

Fig. 10. Alice is secretly reading the letter.

To also enable symbolic model checking for these logics, we can use boolean
encodings of relations which are widely used for model checking transition systems,
starting with the seminal [11]. All states in our structures satisfy a unique set
of propositions. Hence any relation over states is also a relation over sets of
propositions. To encode these relations we use an idea from [28] where BDDs
have also been used to model belief change: We replace the observational variables
O, with a BDD {2; for each agent. This BDD uses a double vocabulary: Suppose
the knowledge structure is based on V' = {p, ¢}, then each (2; encodes a boolean
formula over {p, ¢, p’, ¢'}. The formula encoded by (2; is true exactly for the pairs
of boolean assignments that are connected by ¢’s epistemic relation. For example
if at state {p, ¢} the agent deems the state {q} possible, then {p,q, ¢’} makes
£2; true. Equivalently the opposite direction would be represented by {q¢,p’, ¢’}
making (2; true. The following makes precise how we use this primed notation
and the encoding of relations. More details and explanation can be found in [10,
Section 5.2].

Definition 15. If s is an assignment for V', then s’ is the corresponding assign-
ment for V'. For example, {p1,ps} = {p|,ps}. If ¢ is a boolean formula, (@)’ is
the result of priming all propositions in ¢. For example, (p1 — (p3 A —p2)) =
Py — (D5 A=) . If s and t' are assignments for V. and V' respectively such
that VNV’ = & and ¢ is a formula over V. UV’', we write st' E ¢ to say that
sUt makes p true. Given a relation R on P(V'), we define the boolean formula

P(R):= \/ (SCV)A(LCV))
(s,t)ER

where s TV is again the “out of” abbreviation from Definition 9. Note that this
is a formula over V.UV’ and we have that sRt iff st' F &(R).



Ezample 12. Figures 11 to 13 show an example from [28, p. 136]. We start
with a relation R over states with the vocabulary V' = {p1,p2}. That is, R C
(P({p1,p2}))*. The formula &(R) shown in Figure 12 is a disjunction with one
disjunct for each edge in the graph of R. We use V for the source and V' for the
target. For example, the second disjunct —p; A —pa A —p) A p), is for the edge from
the top left state @ to the top right state {p2}. In contrast, there is no R-edge
from the top right to the bottom right state, hence the disjunct —p; A pa A pj A ph
is not in @(R). In our implementation the formula $(R) is never constructed
explicitly. Instead we represent it using the BDD shown in Figure 13.

!
‘ @ —p1 A Tp2 /\_'pll /\_'p/2) : @

(

(=p1 A —p2 A —pi A ph)

(mp1 A —p2 A pi A —ph) @
(=p1 A —p2 Api Aph)

(=p1 Ap2 A —pi A ph)
(p1 A —p2 Api Aph)
(p1 A —p2 APy A —ph)
(p1 A p2 APy Aph)

<LK LC LKL

Fig. 11. Relation R. Fig.12. Formula ¢(R).  Fig.13. BDD of ¢(R).

Implementing this encoding poses a few design choices. In particular we have
to choose an initial variable ordering for the double vocabulary. For example
we could stack all unprimed above the primed variables. But for our use cases
the interleaving order p1,pi, p2,ph, ... seems preferable because the epistemic
relations of our agents are often at least partially decided by differences in a
single variable. Hence each p should be close to its p’ to keep the BDD small.

Definition 16. Suppose we have n agents. A belief structure is a tuple F =
(V,0,82,...,02,) where V is a finite set of propositional variables, 0 is a boolean
formula over V' and for each agent i, §2; is a boolean formula over VUV,

Definition 17. Semantics for DEL on scenes based on belief structures are
defined inductively as in Definition 5 with the following changes.

1. For knowledge: (F,s) E Qo iff for all t € F : If st’' E £2; then (F,t) E ¢.

2. For simplicity we do not interpret common knowledge on belief structures.

3. Public announcements are still interpreted in the same way by restricting the
state law of the belief structure.

4. However, we change the semantics of private announcements to make them
fully private in the sense that all agents who are not in the group A will not
notice anything: Let

(F.s) E W0 iff (F.8) o= (F,sU{py}) Fo



where py, is a new propositional variable, ||| F is given by Definition 6 and

Fi =V Ulpsh0 A (py = 10l7), 25, 92))
where 27 := 2 A (py > py) if i € A and 2F = 2; N =p;, otherwise.

This already uses || - ||z where F is now a belief structure. As on knowledge
structures, all formulas have boolean equivalents with respect to a given belief
structure. The translation in Definition 6 can be extended with

1Bl 7 == VV'(0" = (2 = (lel7)")

which due to the quantification over V'’ does not contain any primed propositions.
To see that this translation preserves and reflects truth, add the following case
to the proof of Theorem 1:

F,sEO;p < Forallt e F:If st’ E (2 then (F,t)F ¢

For all t € F : If st’ E {2; then t F ||p|| 7

For all t : If t € F and st' F (2; then t E ||p|| 7

For all t : If t E 6 and st’ F §2; then t E ||¢||+

For all t : If ¢/ £ ¢’ and st' & (2; then t' & (|||l )’
For all ¢ : If st’ E 0 and st’ & £2; then st’ E (||¢]|#)’
For all t:st' F 0 — (£, = (|lell#)")

SEVV (0 — (12, = (ell7))

rregret

Belief structures are a generalization of knowledge structures: Any set of
observational variables O can also be encoded using the BDD of the boolean
formula £2(0) := A\ co(p <> p’). This describes the same relation as O because
for any two states s and t we have st’' F 2(0) it sNnO =¢tNO.

Ezxample 13. We can also model Example 11 as a private announcement on belief
structures. The initial structure is

F= (V = {p},e = Ta QAlicc = T; QBob = T)
and after the update we have
]_-pAlice == (V = {]%pp}»‘g = (pp — p)7 QAlice = (pp And P;)a QBob = “p;)

where the three boolean formulas can be represented using these BDDs:

'QAlice




We can see how this corresponds to the second Kripke model in Figure 10: First
note that the state law 6 is satisfied by the three states @, {p} and {p, p,} which
we can identify respectively with the worlds in the top left, top right and bottom.
The observation law {2a1ice then says that the upper and the lower part of the
model are disconnected for Alice, whereas Bob almost has a total relation encoded
in 2,p up to the lower world being unreachable.

As the reader will already expect, such a correspondence between general
Kripke models and belief structures can also be made precise. The following
generalizes Lemma 1 from above. The only difference is in condition C1 dealing
with the BDDs (2; now instead of variable sets O; before.

Lemma 2. Suppose for a set of agents I = {1,...,n} we have a belief structure
F=WV,0,0,...,2,) and a finite Kripke model M = (W, m,R1,..., Ry) with
a set of primitive propositions U C V. Furthermore, suppose we have a function
g: W = P(V) such that

C1 For all wi,wy € W and i € I we have that g(w1)(g(ws)’) E 2; iff w1 R;ws.
C2 For allw € W and p € U, we have that p € g(w) iff m(w)(p) =T.
C8 For every s CV, s is a state of F iff s = g(w) for some w € W.

Then, for every L(U)-formula ¢ we have (F, g(w)) E ¢ iff (M, w) F ¢.
Proof. By induction on ¢, the same as for Lemma 1 up to the following cases:

1. Knowledge: If ¢ is of the form K1, then by Definition 17, we have (F, g(w)) E
O iff (F,s) E ¢ for all states s of F with g(w)s’ E ;. By C3 this is
equivalent to having (F, g(w’)) E ¢ for all w' € W with g(w)g(w’) E §2;,
which by C1 is equivalent to (F, g(w')) E 4 for all w’ € W with wR;w’. Now
by the induction hypothesis, this is equivalent to (M, w’) E 1 for all w’ € W
with wR,w’ which is exactly (M, w) F O;9 by Definition 14.

2. Public announcements: Suppose ¢ is of the form [¢] ,&. As in the proof for
Lemma 1 it suffices to show that (MY, W) E ¢ iff (F¥, g(w)) F &. To do so,
let ¢ be the restriction of g to WM’ = {we W | (M,w) E 9}. It remains
to show that ¢’ fulfills C1 to C3. The new C1 is also a universal condition
and holds for g on W™ hence it must also hold for ¢’ with respect to the
restricted set WMw C WM, Conditions C2 and C3 are unchanged, hence
the same proof applies. Together, ¢’ fulfills all three conditions and by the
induction hypothesis we get that (MY, W) E & iff (F¥, g(w)) E €.

3. Private announcements: Suppose ¢ is of the form [¢] ,&. By Definitions 14
and 17, we have that (M, w) E [¢] ,& iff (M, w) E 1) implies (Mﬁ, (w,1)) E ¢,
and (F, g(w)) £ [] o€ iff (F,g(w)) E ¢ implies (F}, {py} Ug(w)) E &

As (M, w) Ev iff (F, g(w)) F ¢ by induction hypothesis, it suffices to prove
that (M7, (w,1)) k€ iff (F7, g(w) U {py}) F &

Let g : WME P(V U{py}) be defined by ¢'(w,b) := g(w) U {py | b=1}.
By g(w,1) = g(w) U {py} and the induction hypothesis it remains to show
that ¢’ also fulfills C1 to C3.



For C1, take any (w1, b1), (ws,by) € WMZ and any 4. As in Definitions 14
A

and 17 let RlM"” and (2] be the epistemic relations and the observation laws
after the announcement. Consider two cases in which we have the following
equivalences. The steps © follow from C1 with respect to g. First, if i € A:

(9" (w1,b1))(g" (wa, b2)") F 2F
<= (g(w1) U{py | b1 = 1})((g(w2) U{py | b2 = 1})") F £2i A (py <> Ply)
<= (g9(w1))(g(w2)") F £2; and by = by
& wRMwy and by = by
< (wl, bl)R;-/Vlw (’LUQ, bl)

Second, if i ¢ A:

(g (w1, b1))(g' (w2, b2)") E £2F

= (g(w1) U{py | b1 =1})((g(w2) U{py | b2 = 1})") F £2; A —py
— (g(w1))(g(w2)") E 2; and by # 1

é ’wlwa’LUQ and b2 75 1

MA
e (wl,bl)Ri ”(wg,bl)

To show C2, take any (w,b) € WM and any p € U. Note that py, ¢ U
and thus p # py. Hence we have p € ¢’'(w,b) iff p € g(w). By C2 for g the
latter is equivalent to 7 (w)(p) = T which by Definition 14 is equivalent to
M (w, b)(p) = T.

For C3, take any s C V U {py}. To show left to right, suppose s is a state
of ff. Then s F 0 A (py — ||¢||7). In particular s F 0, so ¢t := sNV is
a state of F. Hence by C3 for g there is a w € W such that g(w) = ¢.
We consider two cases. First, suppose py € s. Then by s F (py — ||¢]/#)
we have s E ||¢| z. Note that py does not occur in |[¢|| z, hence t F ||| £.
By Theorem 1 we have F,g(w) F ¢ and by induction hypothesis we get
(M, w) F 1. Moreover, we have a world (w, 1) in ./\/lﬁ and by definition of ¢’
above we have py € ¢'(w, 1). Therefore ¢'(w, 1) = g(w) U {py} = s. Second,
suppose py ¢ s. By Definition 14 we have a world (w,0) in Mﬁ and by
definition of ¢’ above we have py € ¢'(w,0). Therefore ¢’'(w,0) = g(w) = s.
In both cases we found a world (w, b) in the updated model corresponding to
s, i.e. such that ¢'(w,b) = s. For right to left, suppose ¢’'(w, b) = s for some

(w,b) € WM By C3 for g we have that ¢ := g(w) is a state of F, i.e. t F 0.
Again we consider two cases. First, suppose py, € s. Then by definition of
g we have b = 1. Hence by Definition 14 we must have (M,w) E ¢ and
therefore by induction hypothesis also (F, g(w)) E 9. By Theorem 1 with
the addition on page 29 we get g(w) F ||¢|| 7. Note that p,y does not occur
in ||¢|| 7. Hence we also have s & ||| 7. Second, suppose py & s. Then we
have s E (py — [|¢||7). In both cases we have s F 0 A (py, — ||| F), L.e. s is
a state of ]—'wA. Finally, by the induction hypothesis we have (Mﬁ, (w,1))EE

iff (F7,g'(w, 1)) F & iff (F7 g(w) U{py}) F &€



O

We now also generalize the translation methods from Definitions 8 and 9.
Lemma 2 then allows us to show their correctness and get generalized versions of
Theorems 2 and 3: For every belief structure there is an equivalent Kripke model
and vice versa.

Definition 18. For any belief structure F = (V,0,821,...,82,), we define the
Kripke model M(F) := (W, m,R1,...,Rpn) as follows

1. W is the set of all states of F,
2. for each w € W, let the assignment w(w) be w itself and
3. for each agent i and all w,w' € W, let wR;w' iff ww' E £2;.

Definition 19. For any finite Kripke model M = (W, m,Rq,...,Ry) we define
a belief structure F(M) as follows. W.l.0.g. we assume unique valuations, i.e. that
for all w,w" € W we have w(w) # w(w'). If this is not the case, we can add
propositions to V. and extend 7 in such a way that m(w) # w(w'"). The mazximum
number of propositions we might have to add is ceiling(logy |W1). Let F(M) :=
(V,0n, $24, ..., £2,) where

1. 'V is the vocabulary on which M 1is interpreted with added propositions if
necessary to make valuations unique,

2.0y :=\V{sCV|3weW:n(w)=s} using C from Definition 9,

3. for each i the boolean formula 2; := ®(R;) represents the relation R; on

P(V) given by R;st iff Jv,w € W : w(v) = s Am(w) =t A Rvw.

Note that different from Definition 9 here we do not have to add propositions
to distinguish all equivalence classes of all agents. This is because the (2;s can
carry more information than the simple sets of observed variables O;.

Theorem 5. For any belief structure F, any state s of F, and any ¢ we have
(F,5) E o iff (M(F),s)F e

Proof. By Lemma 2 using the identity function as g. ad

Theorem 6. For any finite pointed Kripke model (M, w) and every formula ¢,
we have that (M, w) E ¢ iff (F(M),g(w)) E ¢.

Proof. We have to check that Lemma 2 applies to Definition 19. As we already
assume unique valuations in M, the appropriate injective function g : W — P(V)
is just defined by g(w) :=={p e V | n(w)(p) = T}.

To show Cl1, take any wi,wy € W and ¢ € {1,...,n}. and note that
g(wl)g(wg)’ = Qz iff ’/T(’wl)ﬂ'(wg)/ E @(Rz) iff wlRiwz.

For C2, take any w € W and any v € U. By definition of g we have v € g(w)
iff w(w)(v) =T.

For the “if” part of C3: If s = g(w) for some w € W, then by the definition of
O, we have that g(w) F 6y and hence g(w) is a state of F(M). For the “only
if” part, suppose s is a state of F(M). Then s F 0, hence it must satisfy one
of the disjuncts and there must be a w € W such that s F g(w) C V. Now by
definition of C we have s = g(w) = 7(w).

Now the theorem follows from Lemma 2. O



Given this symbolic representation of Kripke models with arbitrary relations,
one might wonder whether graph properties characterized by modal formulas also
have corresponding BDD properties. The answer is positive and some examples are
the following. The total relation is given by the constant T and the empty relation
by L. To compute the inverse Bdd(R~!), simultaneously substitute primed for
unprimed variables and vice versa in Bdd(R). The relation R is symmetric iff
Bdd(R) = Bdd(R™!). To get the symmetric closure, take Bdd(R) VV Bdd(R™1).
Similarly, R is reflexive iff A,(p; <+ p}) — Bdd(R) is a tautology and the reflexive
closure is given by Bdd(R) V A\;(p; <> p})-

To check whether belief structures have similar computational advantages as
knowledge structures we repeated the muddy children benchmark from Section 5
using the BDD encoding for relations instead of observational variables. As
expected this worsens performance, but for larger cases of ten or more agents
model checking on belief structures is still faster than DEMO-S5 — for example,
it takes around 15 instead of 200 seconds to check the case of 12 agents. However,
a better and more fair comparison would be with the original DEMO that can
also handle non-S5 models and should be done with other scenarios than muddy
children. We leave this as future work.

To conclude this section, note that this generalization is compatible with the
one made in the previous section: One can define belief transformers in the same
style as knowledge transformers in Definition 11, replacing the observed atomic
propositions O; with BDDs £2;" encoding a relation on (V' *). Thus we obtain a
symbolic representation of events where observability need not be an equivalence
relation, for example if someone is being deceived.

9 Conclusion and Future Work

We have achieved our goal of putting a new engine into DEL by a suitable semantic
model transformation. This was shown to work well in various benchmarks, for
example the Muddy Children and Russian cards. But there is obviously more to
be explored now that we know this.

One line would be to use the same models with richer languages, and see
whether the parallels that we found still persist. For example, factual change [4]
should also be representable as knowledge transformers. They also motivate a
new notion of action equivalence which might help to solve a problem with action
models where bisimulation had to be replaced with the more complicated notion
of action emulation [22].

Sections 7 and 8 showed that our framework can be generalized to cover
many flavors of DEL, including action models and non-S5 notions like belief. Our
benchmarks so far mainly concerned the S5 framework and we plan to explore
the performance of the extensions in future work. As the Russian cards example
(page 16) showed our model checker also performs well enough to deal with
planning problems. While epistemic planning is often done using knowledge bases,
our methods could bring logic back in the game.



As mentioned at the end of the last section we can combine knowledge
transformers and the non-S5 encoding to obtain belief transformers. These will
share both the features and the problems of non-S5 action models. As [20] says,
“update of belief models with belief action models has a glitch” The result of
updating a KD45 Kripke model with a KD45 action model does not have to be
KD45. This is a good reason to study other models of belief which we have not
discussed here, for example preference and plausibility orders. Finding a symbolic
representation for these kinds of semantics was not in the scope of this paper
but we hope to adapt our methods to them in the future.

On a technical side, we suspect that our program can still be further optimized
to deal with much larger models. For example the usage of modern SAT solvers
instead of BDDs could be interesting. Other abstraction ideas from the DEL
literature could be implemented and their performance compared to our approach,
for example the mental programs from |[§].

But perhaps the deepest issue that we see emerging in our approach is this.
While standard logical approaches to information flow assume a sharp distinction
between syntax and semantic models, our BDD-oriented approach suggests the
existence of a third intermediate level of representation combining features of
both that may be the right level to be at, also from a cognitive viewpoint. We
leave the exploration of the latter grander program to another occasion.
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Appendix: Input and Output Examples

Based on the methods presented in this paper we implemented a model checker
for DEL which can be used in two ways. First, similar to DEMO-S5 one can load
SMCDEL as a Haskell module. This allows us to employ other Haskell functions
and libraries and is especially useful to generate larger models and formulas
automatically. All benchmarks in Section 5 were done this way.

Figure 14 shows how Muddy Children is encoded as a Kripke model for
DEMO-S5. The function takes parameters n and m and returns the initial
situation of n children out of which m are muddy. It makes heavy use of bTables
which generates all possible boolean assignments for a set of propositions. Instead
of using a valuation function the states itself are lists of boolean values that
indicate which agents are muddy. Equivalence relations for each agent are then
defined as partitions. We also list the output for the case of n = m = 3 and
include a graph of the model in Figure 15.

mudDemoKrpInit :: Int -> Int -> DEMO_S5.EpistM [Bool]

mudDemoKrpInit n m = (DEMO_S5.Mo states agents [] rels points) where
states = DEMO_S5.bTables n
agents = map DEMO_S5.Ag [1..n]

rels = [(DEMO_S5.Ag i, [[tabl++[True]l++tab2,tabl++[False]++tab2] |
tabl <- DEMO_S5.bTables (i-1),
tab2 <- DEMO_S5.bTables (n-i) 1) | i <- [1..n] ]
points = [replicate (n-m) False ++ replicate m True]

*Main> mudDemoKrpInit 3 3
Mo [ [True ,True ,True ], [True ,True ,False], [True ,False,True ],
[True ,False,False],[False,True ,True ],[False,True ,False],
[False,False,True ], [False,False,False]]
[Ag 1,Ag 2,Ag 3]
[
[(Ag 1,[[[True ,True ,True ], [False,True ,True ]],
[[True ,True ,False],[False,True ,Falsel],
[[True ,False,True ],[False,False,True 1],
[[True ,False,False], [False,False,False]]])
,(Ag 2,[[[True ,True ,True ], [True ,False,True 1],
[[True ,True ,False],[True ,False,Falsel],
[[False,True ,True ],[False,False,True 1],
[[False,True ,False],[False,False,False]]])
,(Ag 3,[[[True ,True ,True ], [True ,True ,Falsell,
[[True ,False,True ],[True ,False,Falsel],
[[False,True ,True ],[False,True ,Falsel],
[[False,False,True ], [False,False,False]]])]
[[True, True,True]l]

Fig. 14. Muddy Children input and output for DEMO-S5.
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Fig. 15. Kripke model for Muddy Children.

In Figure 16 we list the function mudScnInit which takes the same parameters
n and m but generates a knowledge structure for SMCDEL. The state law is
simply T and each agent observes all but one proposition. Below the function
we again list the example output for n = m = 3 and include a mathematical
description of the structure. We can see that both the specification and the
output are much shorter than their Kripke equivalents.

mudScnInit :: Int -> Int -> Scenario
mudScnInit n m = (KnS vocab law obs, actual) where
vocab =[P 1 .. P n]
law boolBdd0f Top
obs [ (show i, delete (P i) vocab) | i <- [1..n] ]
actual = [P 1 .. P m]

*Main> mudScnInit 3 3
(Kns [P 1,P 2,P 3] Top [("1",[P 2,P 31),("2",[P 1,P 3]),("3",[P 1,P 2])]
,[P 1,P 2,P 3])

O1 = {p2,ps}
V = {p1,p2,p3},00 = T, O2 = {p1,p3} | ,{p1,p2,p3}
O3 = {p1,p2}

Fig. 16. Muddy Children input and output for SMCDEL.

To further simplify the usage of our model checker, we also provide an interface
in which knowledge structures can be specified using a simple text format. In
particular no knowledge of Haskell is needed here. An example input file for the
Dining Cryptographers scenario with three agents is shown in Figure 17. We
first describe the vocabulary in the VARS section. Then LAW contains a boolean
formula, the state law. Under OBS we list which agent can observe what. After this
we use VALID? and WHERE? followed by formulas. The former checks for validity



while the latter returns a list of states where the argument is true. Note that the
indentation is just for readability. Whitespace and Haskell style comments are
ignored by the program. The output can be printed to the command line as text
(Figure 18) or as ready to use BTEX code (Figure 19).

VARS
0, -- the NSA paid
1,2,3, -- cryptographer i paid
4,5,6 -- shared bits/coins

LAW -- exactly one cryptographer or the NSA paid
AND ( OR (0,1,2,3), ~(0&1), ~(0&2), ~(0&3), ~(1&2), ~(1&3), ~(2&3) )

0BS
alice: 1, 4,5
bob : 2, 4, 6
carol: 3, 5,6
VALID?

(alice,bob,carol) comknow that (OR (0,1,2,3))

WHERE?
alice knows whether 0O

VALID?

[?! XOR (1, 4, 5)] -- After everyone announces the

[?! XOR (2, 4, 6)] -- XOR of whether they paid and

[?! XOR (3, 5, 6)] -- the coins they see ...

AND (
-- if the NSA paid this is common knowledge:
0 -> (alice,bob,carol) comknow that O,
-- if one of the agents paid, the others don’t know that:
1 -> AND (= bob knows that 1, ~ carol knows that 1),
2 -> AND (T bob knows that 1, ~ carol knows that 3),
3 -> AND (~ bob knows that 1, ~ carol knows that 2)

Fig. 17. Three Dining Cryptographers in SMCDEL.



Is Ck ["alice",...] (Disj [PrpF (P 0),...]) valid on the given structure?
True

Is Ck ["alice","bob","carol"] (Disj [...]) valid on the given structure?
True

At which states is Kw "alice" (PrpF (P 0)) true?
(11,(1,61,01,5]1,[1,5,6],[1,4]1,[1,4,6],[1,4,5],[1,4,5,6]

Is PubAnnounceW (...) ... (Conj [...]) valid on the given structure?
True

Fig. 18. Output of SMCDEL on the command line (shortened).

Given Knowledge Structure

{p1,p4,ps}
) {p27p47p6}
{P37P5:p6}

F = | {p,p1,p2,p3,P4,05, D6},

Results

- Is Ck{alice,bob,carol} \/{p7pl,p27p3} valid on F7?
True.

— At which states is K;ncep true?

{p1}{p1,pe}. {p1, s} {p1,ps, P}, {p1, pa}, {p1, P4, P6}, {P1, P4, Ps},
{p1,p4,ps5,D6}

— Is [2' D{p1, pa, ps }[?! D{p2, p4, ps H[? D{ps, s, ps }] AH{(p —
Ckiap,eyp), (P1 — (7 Kbp1 A =Kep1)), (p2 = (=Kbp1 A = Keps)), (p3 —
(—=Kbp1 A = Kcp2))} valid on F?

True.

Fig. 19. Output of SMCDEL in ETEX.
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