
Fundamental Ideas of Computer Science

Andreas Schwill

Fachbereich Mathematik/Informatik - Universität Paderborn

D-33095 Paderborn - Germany

email: schwill@uni-paderborn.de

1 Introduction
The current situation of computer science education at the university level is characterized

by two aspects:

1. Even with a historical background of more than 40 years computer science stills develops

dynamically. Continuously paradigm changes are announced, e.g.

- from programming in a straight forward manner to structured programming after the

software crisis in the sixties, later to logic, functional or object-oriented programming,

- from sequential execution to parallel execution by autonomous and intelligent

processors that communicate,

- from programming as an art to programming as a science of engineering.

Since each student will probably face several paradigm changes in future life with much

of the respective knowledge becoming obsolete each time, the skills acquired earlier

must be robust to latest fashion and enable the student to cope with the changes.

Hence, it is necessary that students obtain a sketch of the fundamental ideas, principles,

methods and ways of thinking of computer science. Only these fundamentals seem to

remain valid in the long term and enable students to acquire new concepts successfully

during their professional career in that these concepts will often appear to be just furt-

her developments or variants of subjects already familiar and then are accessible more

easily using ideas learned before.

2. Due to the dynamic evolution of computer science new subjects arise permanently,

grow up, become a regular branch and finally will be included into the computer science

curriculum. So students have to attend a variety of lectures most covering a very narrow

field of computer science and taught in a way as if the fields had nothing in common. A

linking structure between these fields is rarely pointed out. Hence, students have to

keep in mind all the different details acquired in lectures whereas carefully stressing

the methods and ideas common to different fields would make things more transparent

for them. They would see that things they are taught now are related in that they are

just modifications or specializations of a fundamental notion already got to know in

another context.

These guidelines without relating to a specific science and meant to improve school

education have been developed first by the American psychologist J.S. Bruner in his fun-

damental work [B60].

In this paper we carry over Bruner’s proposals to computer science education at the

university level. In section 2 we first sketch the background of Bruner’s work. Then we

develop criteria for fundamental ideas and propose a general procedure to ascertain funda-

mental ideas. Another subsection devotes to teaching of fundamental ideas. Finally in

section 3 we establish fundamental ideas of computer science and check their

fundamentalness according to the criteria developed.

2 Fundamental ideas as an educational principle
As early as 1929 the philosopher and mathematician A.N. Whitehead [W29] proposed to

deal in school with few general ideas of universal significance, since the students are

helplessly facing a vast amount of details that neither enable them to acquire big ideas nor

reveal a connection to everyday thinking.

In 1960 then J.S. Bruner formulated the teaching principle that lessons should predominantly

orient towards the structure (the so-called fundamental ideas) of science.

2.1 Background and motivation
Bruner substantiates his approach as follows: Learning is mainly for preparing us to master

our future life more successfully. Since learning under control by a teacher - not mentioning

continuing education - is almost finished with the last school year or university semester,

changes occuring later in private life, economy and society can only be coped with by

transfering knowledge earlier acquired to the new situations.

This transfer can be classified with respect to two different aspects:

- If the new situation resembles one already known so that the solution schema of the

latter has to be changed or extended only slightly in order to be applicable to the new

situation, one speaks of specific transfer . Specific transfer relates to relatively local

effects and is mostly required if it is upon the short-term application of manual skills

within a relatively well-defined area.

- The nonspecific transfer however relates to long-term (often life-long) effects. Instead

of or in addition to manual skills we learn fundamental notions, principles and ways of

thinking (so-called fundamental ideas). Moreover we develop attitudes, e.g. to learning

itself, to research, to our own achievement, to conjectures, to heuristics, to observations,

to solvability of problems etc. Then in some sense problems occuring later in our lives

can be considered as special cases and treated with the corresponding solution schemas

in transfered form. While specific transfer directly relates something new to something

already known of the same logical level, nonspecific transfer includes a metalevel (Fig.

1).

basic idea
attitude

nonspecific
transfer to new

situation

...

subjects form basic ideas
and attitudes

Fig. 1: Nonspecific transfer

During vocational and continuing education specific transfer is dominating. The skills are

mainly not taught in a way that forms fundamental ideas in the students. Consequently

these skills can usually only be transfered specifically to new problems. On the other side

nonspecific transfer dominates the educational process of universities and schools providing

general education: Permanent creation, extension and consolidation of knowledge in form

of fundamental ideas. This knowledge is not taught in a form to be applied immediately.

Therefore - and now we return to Bruner’s request mentioned at the beginning - education

has to be oriented mainly towards fundamental ideas. Each subject to be included into

lessons and lectures has to be analysed what ideas it is based on. All curricula and teaching

methods are to be geared to stress the fundamental ideas of each topic.

Of course, these requests bring up several problems: What are fundamental ideas? How

to modify curricula and programs in order to assign a central role to fundamental ideas?

Which subjects are most suitable to teach fundamental ideas with respect to level of

education? Some of these questions will be treated in the following, first from a general

point of view and in section 3 with respect to computer science.

2.2 Fundamental idea: A more precise definition
The central question behind all considerations so far is: What are fundamental ideas? J.

S. Bruner himself does not provide an explicit definition of this notion. Instead he gives

many examples of fundamental ideas and so leaves it to the reader to obtain an intuitive

idea of what this term may denote. Just a few, yet important hints are scattered over his

work, e.g.

„...what is meant by ‚fundamental‘ in this sense is precisely that an idea has wide as

well as powerful applicability“ (p. 18).

Hence, fundamental ideas are widely applicable in many contexts and organize and

integrate a wealth of phenomena. We call this property the horizontal criterion having

the following illustration in mind: A horizontal axis penetrating a great number of application

fields (Fig. 2).

idea

application fields

Fig. 2: Illustration of the horizontal criterion

Bruner’s statement that, if earlier learning is to make later learning easier, then there must

be a general principle that reveals the connections between things confronted with earlier

resp. later, shows in combination with his famous thesis

„that any subject can be taught effectively in some intellectually honest form to any

child at any stage of development.“ (p. 33),

that fundamental ideas structure the topics of a field also vertically: A fundamental idea

can be taught on almost every level of understanding, i.e. on the level of a primary school

as well as on the university level (vertical criterion). Presentations differ only by level of

detail and formalization. Formulated the other way round (after R. Fischer [F84]): Topics

that cannot be taught to students in primary school cannot be fundamental ideas.

Hence, fundamental ideas must be acquirable in early stages of the development of the

human brain. So they cannot be made as objective as possible in some abstract sense or

defined as a law of nature independent of man. Nevertheless we shall try to present an

objective catalog in section 3, which however is objective only insofar as a number of

people might accept the notions as fundamental ideas of computer science.

Vividly speaking we can subdivide the application field of a fundamental idea into different

levels of growing intellectual demands. Thus, a fundamental idea is represented by a

vertical axis intersecting each level (Fig. 3).

The vertical criterion is of particular relevance for lessons: An idea satisfying this criterion

can serve as a guideline for lessons and lectures on every level of the entire educational

process. In connection with the spiral principle we return to this later.

intellectual
levels

high level

low level

application field

idea

Fig. 3: Illustration of the vertical criterion

This finishes the review of Bruner’s criteria for fundamental ideas. In the following we add

the opinions of two different authors which, although relating to mathematics, also contain

general remarks.

A. Schreiber’s [S83] contribution, mainly in line with Bruner’s philosophy, consists of a list

of handy clues for fundamental ideas of mathematics, namely:

- Width , i.e. logical generality. What he probably means is that an idea has width if it is

versatile to a certain degree and leaves some freedom for interpretations and

formalizations. Hence, this property rules out exactly defined algorithms, axioms or laws.

Example: The law of commutativity a+b=b+a is not an idea, since it is lacking generality.

Invariance may be considered an idea with width instead, which subsumes the law of

commutativity (invariance against change of operands) as well as many other phenomena

in physics, chemistry and other sciences. Likewise the famous equality E=mc2 or the

quicksort algorithm are not fundamental ideas.

- Richness , i.e. a wealth of applicability and relevance. This criterion almost coincides

with our horizontal criterion.

- Sense , i.e. embodiment in everyday life. This criterion - we call it the criterion of sense

- extends Bruner’s criteria. A fundamental idea according to Schreiber still belongs to

the sphere of everyday thinking its context being pretheoretical and unscientific. Only a

precise definition turns an idea into an exact notion. Cf. the quotation of Whitehead at

the beginning of section 2.

Example: The relation sketched above between an idea with „sense“ and a notion exists

between the idea of „reversibility“ and the notion of „inverse function“. While „inverse

function“ is a pure mathematical notion having no everyday life meaning, the idea of

reversibility can be pointed out in many situations in everyday life.

In his paper F. Schweiger [S82] determines fundamental ideas of analysis where he defines

fundamental ideas to be a

„sheaf of actions, strategies or techniques tied together by loose analogy or transfer

which

(1) are demonstrable in the historical development of mathematics,

(2) appear to be sound to structure curricula vertically,

(3) seem to be suitable ideas concerning the question „What is mathematics?“,

(4) could make mathematical lessons more flexible and more transparent.

Furthermore

(5) an embodiment in everyday language and thinking, so to speak a corresponding

archetype with respect to thinking, speaking or acting seems necessary.

Schweiger’s opinions differ from Bruner’s and Schreiber’s in several ways. While listing

the vertical criterion (item (2)), he does not mention the as important horizontal criterion.

On the other hand Schweiger stresses (as does Schreiber) the relation of fundamental

ideas to everyday life (item (5)).

Two other aspects are new: the historical one (item (1)) and the philosophical one (item

3)). The historical aspect - we speak of the criterion of time henceforth - is important for

two reasons. On the one hand it gives a clue how to find fundamental ideas: By observation

of the historical development of scientific notions, concepts and structures. On the other

hand it indicates that fundamental ideas of a science will be relevant for a longer period of

time. This property has also been observed by J. Nievergelt [N90] when expressing his

„quest for classics“:

„How do we recognize ideas of long lasting-value among the crowd of fads? The

‚test of time‘ is the most obvious selector. Other things being equal, ideas that have

impressed our predecessors are more likely to continue to impress our successors

than our latest discoveries will.“ (p. 5)

The philosophical aspect (as well as item (4) of Schweiger’s list) seems to be rather a

criterion for but an advantage of fundamental ideas. For having structured a science by a

list of fundamental ideas one also has a philosophically sound basis of the science, knows

its essence and can differentiate it from other sciences.

Now we wish to summarize the above remarks by a definition of our own which combines

the four criteria elaborated above.

„Definition“:

A fundamental idea with respect to some domain (e.g. a science or a branch) is a schema

for thinking, acting, describing or explaining which

(1) is applicable or observable in multiple ways in different areas (of the domain) (hori-

zontal criterion),

(2) may be demonstrated and taught on every intellectual level (vertical criterion),

(3) can be clearly observed in the historical development (of the domain) and will be

relevant in the longer term (criterion of time),

(4) is related to everyday language and thinking (criterion of sense).

Up to now fundamental ideas have been proposed mainly for mathematics and some of

its branches, namely theory of probability, analysis, linear algebra, numerical mathematics,

group theory and geometry [F76,H81,H75,K81,M80,S82,T79]. Other approaches concern

physics, chemistry and biology [S70,S81,G77].

2.3 How to determine fundamental ideas?
There are very few comments in literature concerning this question, anyway it is a difficult

problem (according to Bruner) since it requires a comprehensive overview of a science to

prove single ideas fundamental, to obtain a complete collection of fundamental ideas of

the science, to show their independency or to find hierarchies between them. For the

moment the following program which abstracts from the contents of a science to its ideas

seems of practical use only:

Step 1: Analyze the concrete contents of a science and determine relationships and

analogies between its subjects (horizontal criterion) as well as between different

intellectual levels (vertical criterion). This gives a first collection of fundamental ideas.

Step 2: Revise and improve this list by checking whether each idea has a meaning and

can be found in everyday life (criterion of sense).

Step 3: Try to review the historical development of each idea. This possibly gives other

viewpoints and stabilizes the collection of ideas. Also consider the suggestion of

Nievergelt (section 2.2).

Step 4: Finally the list of ideas is tuned according to the following questions: Do the ideas

have a similar level of abstraction? Is it possible to structure or group the ideas

somehow? Are there any hierarchical or network dependencies between them? Are

the ideas „linearly independent“?

After a possibly iterative execution of this procedure one may obtain a stable collection of

fundamental ideas. However one has to keep in mind that every list so obtained is affected

by the person performing this procedure, because none of the notions and conditions

involved is nor can be formally defined, i.e. always leaves room for interpretations.

Furthermore there is no criterion to prove the completeness of a collection of ideas. At

best this property is gained either by discussion and regular use of the list within the

scientific community or by orienting education towards ideas in the sense of Bruner.

2.4 How to teach fundamental ideas?
The most important contribution stems from Bruner himself when he requires that lessons

oriented towards fundamental ideas have to be organized according to the spiral principle

which he describes as follows:

„The early teaching of science, mathematics, social studies, and literature should

be designed to teach these subjects with scrupulous intellectual honesty, but with

an emphasis upon the intuitive grasp of ideas and upon the use of these basic

ideas. A curriculum as it develops should revisit these basic ideas repeatedly, building

upon them until the student has grasped the full formal apparatus that goes with

them.“ (p. 13).

When analyzing the parts of this description in more detail one recognizes three

subprinciples which in a way form the basis of the spiral principle:

- Principle of extendibility : A subject has to be selected and treated at a specific place

within the curriculum in such a way that it can be extended at a higher level. One has to

avoid approaches (also by teaching half-truths) that were chosen for didactic reasons

only but later require a change of views and a revision of statements.

- Principle of prefiguration of notions : The symbolic demonstration of notions or

concepts and its structural analysis has to be prepared already on a lower level by

pictures (iconic) and actions (enactive). That means: before a notion can be analyzed

theoretically in full detail, it should be first put into use so that students obtain an intuitive

idea of it.

- Principle of anticipated learning : The treatment of a scientific field should not be

delayed until a complete and detailed analysis seems possible but has to be initiated

before on a lower level.

2.5 Advantages of Bruner’s conception
Bruner himself mentions the following advantages:

- A subject is more comprehensible if the student understands its fundamental principles.

- Fundamental ideas condense information by organizing uncoherent details into a linking

structure which will be kept in mind for a longer time. Details can be reconstructed from

this structure more easily.

- Fundamental ideas support non-specific transfer. Their generality allows many problems

to be treated as special cases.

- Since fundamental ideas structure the subject vertically they reduce the lag between

current research findings and what is taught in schools or lower levels of undergraduate

studies. This expresses Bruner’s conviction that

„... intellectual activity is the same anywhere, whether the person is a third grader

or a research scientist.“ [B60].

So the activities of a scientist and a student in primary school do not differ in essence,

since both apply the same fundamental ideas, yet on a different level.

Further advantages:

- While fundamental ideas remain modern even in the longer term (criterion of time),

details become antiquated very early. This holds in particular for computer science with

its dynamic evolution so that Bruner’s conception appears most powerful here.

- By now there is no branch called philosophy of computer science. Thus, a collection of

fundamental ideas may serve as a first approach in order to determine the essence of

computer science and to dissociate it from other sciences.

3 Fundamental ideas of computer science
In order to develop a collection of fundamental ideas of computer science we mainly follow

the plan proposed in section 2.3. Of course we cannot perform each of the four steps in

detail, the principle may suffice here. Also we will not check each of the ideas we obtain

whether it satisfies the criteria mentioned in the definition. For it some examples might be

enough.

Now consider the first step: Analysis of concrete contents and determination of relations

and analogies between its subjects. What are the concrete contents of computer science

to analyze here?

A central purpose of computer science is to investigate the software development process

in its broadest sense and to provide methods for it. Consequently it seems reasonable to

analyze this process for fundamental ideas as is done in the following section.

3.1 Software development
The basis for research in software development is the software life cycle whose standard

representation is given in Fig. 4 [CS90].

problem

specification

documented program

modified program

finished program

problem analysis

design

testing, performance check

installation, delivery

implementation

requirements definition

maintenance

product "scrapped"

Fig. 4: Software life cycle

Let us consider the stages in more detail.

Problem analysis . In this phase the problem to be solved and all relevant aspects of the

environment in which the proposed software system would be used are formally stated.

The phase is divided into four steps:

- Analysis of the current situation: Study and description of the existing system by analyzing

its components, their functions and interrelationships.

- Target concept: Definition of demands on the software to be developed by specifying

user model, underlying hardware, user interface etc.

- Feasibility study: This study gives information whether the ideas about the software

product are realizable at all in their desired form, whether they are feasible in principle

(e.g. are there requirements that describe non-computable problems?) and economically

attractive. The outcome of this study either leads to an abort or to a revision or to carrying

out the project.

- Project planning: Development of time flow charts, allocation of staff to teams etc.

The results of the entire problem analysis phase is recorded in a document called

requirements definition which becomes part of the contract between client and producer.

The central idea in this stage is structured dissection: The vague ideas of the client are

written down in a precise and structured way. The structure of the entire system given is

revealed by breaking down the system into its components and determining their

interrelations. Usually such an analysis is subdivided into several steps by first dissecting

the system roughly into several parts which then are further refined until a sufficient grade

of detail is achieved. This process gives a hierarchy of different levels of abstraction. The

feasibility study deals among others with problems of computability and complexity in a

theoretical sense. Corresponding ideas are e.g. reduction, diagonalization.

Design . While the problem analysis stage describes properties of the software product

without paying regard to how they will be implemented, the programmers develop in the

design phase a model of the system that satisfies the requirements when compiled into a

program. To this end the entire complex system is split up into easily comprehensible units

whose functions and interfaces are described in detail. A standard method is hierarchical

modularization which has two different pure approaches called top-down and bottom-up.

In order to obtain a structure of the modules as clear as possible, we must ensure that

- each module uses the functions from a minimum number of other modules,

- the interface of each module is as small as possible,

- each module hides as much information as possible about its internal structure

(information hiding).

The design stage results in a specification that contains for each module its function,

interface, comments on applicability as well as an overview of all modules and their

interrelations.

In the center of the design stage is the idea of modularization with its two mouldings (top-

down and bottom-up). In order to be able to modularize at all, certain conditions have to be

satisfied: The function of each module must be formally defined by a specification language

that provides a parameter concept and supports information hiding.

Implementation . Development of an executable program whose input/output-behaviour

satisfies the requirements specification. In this stage the selection of a programming

language is particularly important. The main activity concerns the implementation of the

modules. In order to be able to test and change modules more easily later, one has to

keep the following guidelines among others:

- structured programming,

- clearly defined interfaces using parametrization,

- use of semantically simple elements of the programming language.

It is important that the modules as developed in the design stage are reflected in the

program as easily comprehensible units. Implementation results in a fully documented

program.

The central part of the implementation stage is the idea of algorithmization (dissection into

single steps) and the subsequent conversion of an algorithm into an executable program

of a programming language consisting of control structures (sequence, loop, alternative

etc.) and data structures (aggregation, generalization etc.).

Depending on the problem to be solved algorithms may be selected on the basis of diffe-

rent fundamental patterns, often called paradigms, such as divide-and-conquer, branch-

and-bound etc. Implementation itself has to follow the guidelines of structured programming.

For the modules to be visible in the program the programming language must at least

contain a block and a parameter concept as well as means for graphical or linguistic

representation of hierarchies (parantheses, begin ... end, indentation).

Testing . According to the requirements specification the program’s input/output-behaviour

is checked by a combination of testing and verification. It all starts with the module test.

The function of each module is checked with respect to its specification. After putting all

tested and verified modules together integration test ist performed. It follows the installation

test and finally the delivery test.

Main idea in this stage is the quality control, i.e. the analysis of the finished program or

parts of it for correctness. All components of the program are checked either formally or by

test cases for partial and total correctness. If concurrent programs are involved, ideas like

consistency and fairness also play an important role.

Performance check . After checking for correctness the program’s performance is

assessed.

As above the idea of quality control, in particular the idea of complexity, is in the center of

this stage. Fundamental ideas related to this are among others the notions of order or of

worst case complexity.

The remaining stages of the software life cycle are installation, delivery to the client and

maintenance of the product. New ideas not mentioned yet do not arise here.

3.2 A collection of fundamental ideas
Among the ideas mentioned in section 3.1 there are three that play an important role since

they dominate all stages of software development. The idea of algorithmization has already

been mentioned explicitly, the other two arise implicitly only, the idea of language and the

idea of structured dissection. Both ideas will be analyzed in more detail now as they give

hints for several other fundamental ideas.

Language . Not only for programming (programming languages), for specification

(specification languages), for verification (logic calculi), in data bases (query languages),

in operating systems (command languages) the idea of language plays an important role,

but there seems to be a general trend in computer science to formulate any facts by a

language. This even holds in fields where at first sight there seems to be no plain relation

to a linguistic representation, e.g. in VLSI design or in design of logical circuits. This approach

has the following advantage: On the one hand it standardizes the view of facts, since

every problem can be considered as a problem upon words now; on the other hand

manipulation, especially translation, of languages and words has been successfully

investigated in the past.

Example: A computer architecture is often modelled by a multilevel machine [T84] (Fig. 5).

Each level is assigned a language for describing objects and operations of this level in a

suitable manner. The user usually views the top level. Each operation he sends to the

system is stepwise transformed into the lower language level and finally into the hardware.

In close relation to languages there are obviously the ideas of syntax and semantics,

furthermore the different approaches to transform words of one language into words of

another language keeping their semantics, e.g. the ideas of translation, interpretation,

operational extension.

assembly
language

operating system
machine

conventional
machine

digital
logic level

compilation/interpretation

compilation

partial interpretation

interpretation

direct execution
by hardware

microprogramming
level

problem-oriented
language

Fig. 5: Computer architecture as a multilevel machine

Structured dissection . Dissection appears for example

- in problem analysis when the present system is iteratively split up into components or

when teams are created,

- in hierarchical modularization during the design stage,

- during implementation stage when processes are broken down into single steps (cf.

algorithmization) or when a problem is subdivided into smaller ones (divide-and-conquer)

- during software life cycle itself where the development process is subdivided into six

stages each of which comprises several substages.

Obviously we can distinguish two aspects in the idea of dissection, a vertical aspect made

concrete by hierarchization (Fig. 6) and a horizontal one made concrete by modularization

(Fig. 7). Hierarchical modularization is obtained then by merging these two aspects (Fig.

8).

The idea of hierarchization can also be observed in many different contexts: level-oriented

models of computer architecture (see above), language hierarchies (main example is the

Chomsky hierarchy), machine models, complexity and computability classes, virtual

machines, ISO-OSI reference model.

... ...

Fig. 6: Hierarchization Fig. 7: Modularization Fig. 8: Hierarchical modularization

Another important aspect of dissection has not been mentioned yet: Obviously every

dissection procedure comes to an end some time, at the latest if an atomic level is achieved.

Example: In a divide-and-conquer algorithm dissection stops when a problem is achieved

whose solution is obvious.

Hierarchical modularization stops as soon as a module specification is achieved that can

be transformed into a single statement of the underlying programming language.

This observation leads us to the fundamental idea of a generating system, that we call

orthogonalization, inspired by a similar operation for vectors in linear algebra.

Orthogonalization denotes an operation on a domain that gives a small as possible number

of basic elements and a set of operations on this basis such that every object in the

domain can be generated from the basis by finite application of operations. That

orthogonalization is in fact a fundamental idea can be seen from its multiple applications

within and outside of computer science (cf. horizontal criterion and criterion of sense):

- programming languages. A fundamental principle of ALGOL68 has been its orthogonal

design: There are few basic elements for defining data structures and control structures

that may be combined in an arbitrary way. Arrays as well as other data types for instance

may be used as result types of functions. PASCAL is much more restrictive here and

hence cannot be called orthogonal.

- imperative programming languages. The structures assignment, concatenation and while-

loop form a basis for all control structures. Every other statement may be simulated by

these three basic ones.

- functional programming languages. The basic operations in languages that are based

on the λ-calculus are abstraction (i.e. definition of a function with parameters), application

(i.e. function call with actual parameters) and parameter substitution.

- machines. The universal Turing machine is the (one element) basis of the class of all

Turing machines.

- primitive recursive and µ-recursive functions. There is a set of basic functions (e.g.

constant function 1, successor function) and a number of operations (e.g. composition,

substitution, µ-operator) with which every other primitive recursive resp. µ-recursive

function can be generated.

- formal languages. The Dyck language is in some sense a basis of the class of context-

free languages (theorem of Chomsky-Schützenberger).

- Boolean functions. AND, OR and NOT form a basis of all Boolean functions. NAND is

also a basis.

- assembly of cars with modular parts,

- wall-to-wall cupboards built with standardized elements

- houses built with prefabricated parts

- DNS consisting of four basic elements.

For proving that a system is not orthogonal the idea of emulation is often used: Given a

basis if one of its elements can be expressed by means of the others the basis is not

orthogonal.

After these considerations we can now establish our complete catalog of fundamental

ideas of computer science. It contains all ideas already mentioned grouped by subjects

and structured hierarchically. Some new ideas polish the groups. „Master ideas“ are

algorithmization, structured dissection and language (Fig. 9). Note that names written in

italics have been added for systematization only and denote groups of ideas but are not

ideas themselves.

Obviously, the assignment of ideas to master ideas is not unique, since some ideas combine

different aspects. The divide-and-conquer approach, for instance, contains both an

algorithmic and a dissection aspect. Then we have assigned divide-and-conquer to

algorithmization since the dynamic aspect (process aspect) prevails. On the contrary

dissection stresses the static aspect, i.e. the result of the dissection process and not the

way the result is achieved. Furthermore several ideas occur multiple times in different

contexts in the catalog. Reduction and transformation, for instance, denote translation

processes, translation on the other hand appears again as an idea for implementing

hierarchies. So it can be seen that ideas are intertwined in many ways, an exact separation

and assignment is hardly possible.

algorithmization

design paradigms programming concepts evaluation

branch-and-bound

divide-and-conquer

greedy-approach

plane- sweep

verification complexity

part. correctness

termination

consistency

completeness

reduction

order

worst/average/
 amortized case

concatenation (sequence, array, re cord)

alternative (if, case, variant rec ord)

iteration (while, list, file, stac k, queue)

recursion (rec. procedure, tree, s earch tree)

nondeterminism

parametrization

backtracking

concurrency

diagonalization

processor

fairness

process

unit-cost measure

log-cost measure

modularization

methods tools

top-down method

bottom-up method

locality of objects

information
 hiding

specification

abstract data type

team work

hierarchization

realization

nesting translation

enterpretation

operational extension

tree

parantheses

indentation

orthogonalization

emulation

structured dissection

representation

Fig. 9: Fundamental ideas of computer science

language

syntax semantics

accepting

generating

consistency

transformation

completeness

Fig. 9: Fundamental ideas of computer science (continued)

3.3 Verification of fundamentalness
Now we wish to check some ideas for fundamentalness based on the four criteria in the

definition. The master ideas may easily be proved fundamental. The criterion of sense and

the horizontal criterion has been roughly checked already in section 3.2

Verifying the vertical criterion we restrict ourselves to sketching subjects for lessons in

primary school (P), grades 5-9 (S1) and grade 9 and above (S2) respectively of secondary

school that may be used to teach selected ideas on the corresponding intellectual level.

The criterion of time is treated at the end of this section.

Divide-and-conquer approach .

Horizontal criterion: Used in sorting and searching algorithms, in all problems based on

trees, in matrix multiplication, in computational geometry, in the separation of graphs.

Vertical criterion:

(P) A child may sort a stack of paper cards by size by dividing the stack, giving the parts

to its class-mates and merging the sorted stacks he is given back. Numbers may be

guessed by binary searching.

(S1) Algorithms in computational geometry, e.g. for computing the convex hull, may be

used to deepen the knowledge.

(S2) Complexity considerations for general divide-and-conquer algorihms; establishing

and solving a recurrence relation for the runtime.

Criterion of sense: The approach appears in everyday life in many situations, e.g. in all

forms of hierarchically organized divisions of labour or in different search procedures:

A child has lost a toy. Other children help him. Each child looks for the toy in another

area.

Worst case-analysis .

Horizontal criterion: Worst case analysis is done for algorihms with respect to time and

space, for time flow-charts in projects (e.g. critical path method), for error estimation

in floating point arithmetic or for probabilistic algorithms.

Vertical criterion:

(P) Worst case considerations can start with questions like: How long does it take to get

to school in the worst case, if the bus is late, if all traffic lights are red, if the roads are

icy,...? Or: How many questions are necessary in order to find out a number guessed

by a class-mate using binary search?

(S1) A more formal approach may follow at this level, e.g. by relating the runtime to the

length of the input and determining the worst case for each input length.

(S2) Formal definition of worst case runtime and proof of lower bounds.

Criterion of sense: In everyday life worst case considerations often appear in risk

estimations, e.g. in financing a home (What mortgage am I able to pay for even in

the worst case (unemployment)?), in defining the greatest accident that can occur in

a nuclear power station, in defining the safety distance between two cars as being

the distance that allows to stop even if the car in front makes a full braking.

Abstract data type .

Horizontal criterion: Used in all forms of specifying objects that stress operations and their

properties without relating to an implementation.

Vertical criterion:

(P) The natural numbers may be defined as an abstract data type with constants 1 and

operations +1 and -1. The same holds for the blocks world: On a table there is a

number of blocks that may be piled up. Operations are putting one block onto another

one and testing whether a block lies on another one or whether it lies immediately

on the table. Is it possible to establish any situation by these operations (idea of

completeness)?

(S1) The two examples mentioned above may be made more precise here. Problems

concerning consistency and completeness of an abstract data type may follow. Which

laws hold for the operations in the blocks world?

(S2) On this level a formal notation for abstract data types may be introduced using more

complex examples (stack, queue, file). Considerations on implementation may follow.

Criterion of sense: An approach similar to abstract data types appears in constructing a

machine by specifying its behaviour. In particular, this principle is relevant in open

calls for tenders that only specify the „abstract“ behaviour of the object without

mentioning any „implementations“ specific for an eligible producer.

Now it remains to show how ideas occur in the historical development of computer science

(criterion of time). Some important stages of computer science since 1950 are illustrated

in Figs. 10 through 12.

verification, nondeterminism (Floy d)

verification (Hoare)

1950

1960

1970

1980

definition of algorithm (Markov)

lists (McCarthy)

lists (Newell/Shaw); stack (Bauer/ Samelson); tree (Kantorovic)

for-loop (Rutishauser)

block, parametrization (ALGOL 60)

concurrency, coroutines (Conway); branch-and-bound (Little/Murty/Swe eney/Karel)

nondet. Turing machine (Rabin/Scott)

concurrency, semaphor (Dijkstra); complexity classes (Hartmanis/Stea rns)

concurrency, CSP (Hoare)

recursion, quicksort (Hoare); AVL- tree (Adel'son-Velskii/Landis)

order, O-notation (Knuth)

reduction (Cook); verification (Ho are)

reduction (Karp); RAM, cost measures (Cook/Reckhow)

divide-and-conquer (Aho/Hopcroft/U llman,notion coined)

concurrency, OCCAM

testing (Myers)

verification (Hoare)

verification, weakest precondition (Dijkstra)

nondeterminism, recursion, termination (deBakker)

data and control structures of PAS CAL (Wirth)

Fig. 10: Historical development of algorithmization and corresponding ideas

axiomatic semantics

1950

1960

1970

1980

axiomatic semantics of PASCAL

denotational semantics

formal syntax definition (ALGOL 60)

operational semantics

semantics (deBakker)

grammars (Chomsky)

formal semantics of ADA

recursive descent parser (Lucas)

attributed grammars (Knuth)

LL-grammars (Lewis/Stearns)

The Theory of Parsing, Translation, and Compiling (Aho/Ullman); optimizing compiler (Wulf et al.)

logic programming languages

LR-parser (Knuth)

 (Hoare)

(Scott)

 (Hoare)

 (Manna)

Fig. 11: Historical development of language and corresponding ideas

1950

1960

1970

1980

structured programming (Dijkstra); "software crisis"

structured programming (Knuth)

stepwise refinement (Wirth, Hoare); specification (Parnas)

stepwise refinement (Dijkstra)

top-down approach, team work, nesting, indentation (Baker,Mills); in formation hiding (Parnas)

abstract data type (Goguen/Thatche r/Wagner)

abstract data type (Guttag); JSP (Jackson)

interpretation (Wilkes)

object-oriented languages

abstract data type, class concept

translation (Bottenbruch)

specification (Burstall/Goguen)

Fig. 12: Historical development of dissection and corresponding ideas

4 Conclusions
In this paper we have transfered J.S. Bruner’s principle of orienting education towards

fundamental ideas to computer science and brought it up for discussion. According to the

considerations so far this principle seems to be a useful approach to structure computer

science education. In order to support this thesis several advanced investigations would

be helpful:

1) Development of curricula and programs for computer science education that stress

fundamental ideas.

2) Elaboration of suitable examples which highlight certain ideas.

3) Even if the presented catalog of ideas is based on an objective analysis of activities

and methods, it is undoubtedly influenced by the author. Hence, further discussion is

necessary in order to refine and substantiate the catalog within the scientific community.

Finally, we wish to illustrate by three visionary examples the difference between traditional

(subject-oriented) education and an idea-oriented education as proposed here:

traditional (subject-oriented) education idea-oriented education in pure form

Lectures are structured by subjects. Each subject Lectures are structured by ideas. Each idea is

is dealt with until all details are taught. dealt with until all details (e.g. applicability)

are taught.

Lectures concerning a large field cover several Lectures concerning a big idea (e.g. a master

idea)

semesters, e.g. we have lectures called cover several semesters, e.g. we have lectures

databases I, II, III. called divide-and-conquer I, II or

hierarchization I, II, III, IV.

There are professorships and chairs for There are professorships and chairs for

subjects like databases, complexity theory or ideas like divide and conquer, specification or

operating systems. orthogonalization, whose research area covers

all applications of the resp. idea.

References
[B60] Bruner, J.S.: „The process of education“, Cambridge Mass. 1960
[CS90] Claus, V.; Schwill, A.: „Encyclopaedia of information technology, Ellis Horwood 1990
[F76] Fischer, R.: „Fundamentale Ideen bei den reellen Funktionen“, Zentralblatt für Didaktik der Mathe-

matik 3 (1976) 185-192
[F84] Fischer, R.: „Unterricht als Prozeß von der Befreiung vom Gegenstand - Visionen eines neuen

Mathematikunterrichts“, J. für Mathematik-Didaktik 1 (1984) 51-85
[G77] Gärtner, H.: „Lehrplan Biologie - Analyse und Konstruktion“, Sample Verlag 1977
[H81] Halmos, P.R.: „Does mathematics have elements?“, The Mathematical Intelligencer 3 (1981) 147-

153
[H75] Heitele, D.: „An epistemological view on fundamental stochastic ideas“, Educational Studies in

Mathematics 6 (1975) 187-205
[K81] Klika, M.: „Fundamentale Ideen der Analysis“, mathematica didactica 4 (1981) 1-31, Sonderheft
[M80] Müller, M.W.: „Fundamentale Ideen der Numerischen Mathematik“, Beitr. zum Mathematikunterricht

(1980) 238-245
[N90] Nievergelt, J.: „Computer science for teachers: A quest for classics, and how to present them“,

Proc. of the 3rd Intern. Conference on Computer Assisted Learning (1990) 2-15, LNCS 438
[S81] Schmidt, H.J.: „Fachdidaktische Grundlagen des Chemieunterrichts“, Vieweg Verlag 1981
[S83] Schreiber, A.: „Bemerkungen zur Rolle universeller Ideen im mathematischen Denken“, mathematica

didactica 6 (1983) 65-76
[S82] Schweiger, F.: „Fundamentale Ideen der Analysis und handlungsorientierter Unterricht“, Beitr. zum

Mathematikunterricht (1982) 103-111

[S70] Spreckelsen, K.: „Strukturelemente der Physik als Grundlage ihrer Didaktik“, Naturwiss. im Unterr.
18 (1970) 418-424

[T84] Tanenbaum, A.S.: „Structured computer organization“, Prentice-Hall 1984
[T79] Tietze, U.-P.: „Fundamentale Ideen der linearen Algebra und analytischen Geometrie- Aspekte der

Curriculumsentwicklung im MU der SII“, mathematica didactica 2 (1979) 137-163
[W29] Whitehead, A.N.: „The mathematics curriculum“, in: The Aims of Education, MacMillan 1929

Note: This paper is a modified version of a paper that originally appeared (in German) in Zentralblatt für
Didaktik der Mathematik No. 1 (1993).

