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Abstract 

Evidence is presented that the recent trend patterns of surface air temperature and 

precipitation over the land masses surrounding the North Atlantic ocean (North America, 

Greenland, Europe, and North Africa) have been strongly influenced by the warming 

pattern of the tropical oceans. The current generation of atmosphere-ocean coupled 

climate models with prescribed radiative forcing changes generally do not capture these 

regional trend patterns. On the other hand, even uncoupled atmospheric models without 

the prescribed radiative forcing changes, but with the observed oceanic warming 

specified only in the tropics, are more successful in this regard. The tropical oceanic 

warming pattern is poorly represented in the coupled simulations. This error needs to be 

reduced to increase confidence in regional climate change projections around the globe. 
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1 Introduction 

Climate models are now sufficiently advanced that they can reasonably simulate the 

global mean as well as some continental-scale aspects of recent climate change, and 

provide important guidance on future changes on these scales in response to 

anthropogenic changes in radiative forcing (IPCC 2007). This has led to increased 

interest in model skill in simulating and predicting the changes on even smaller sub-

continental scales, that could be different and more severe than the global mean or 

continental-scale changes (IPCC 2007; Sidall and Kaplan 2008; Ray et al. 2008). To this 

end we have compared multi-model ensemble simulations of the last half-century with 

corresponding observations, focusing on the land masses around the North Atlantic 

Ocean – North America, Greenland, Europe, and North Africa. We chose these regions 

partly for their relatively better observational data coverage, and partly because they lie 

within the domains of influence of important natural climate phenomena such as the El 

Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the North 

Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and the Atlantic Multi-decadal 

Oscillation (AMO). 

 

Our original motivation was to clarify the relative importance of the external versus 

internal trend generation mechanisms over these regions. Previous studies had suggested 

important roles for external radiative forcing changes due to CO2 increases (Folland et al. 

1998, Bracco et al. 2004; Deser and Phillips 2009), regional and remote sea surface 

temperature (SST) changes (Graham 1994; Rodwell et al. 1999; Hoerling et al. 2001; 

Sutton and Hodson 2003; Schneider et al. 2003; Deser et al. 2004; Hurrell et al. 2004; 
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Deser and Phillips 2009), as well as natural atmospheric variability over the North 

Atlantic and European sectors (Schneider et al. 2003; Bracco et al. 2004; Hurrell et al. 

2004). We were especially interested in clarifying the role of the SST changes, which if 

important would highlight the importance of correctly representing those changes in 

climate models to capture the trends over these land areas. Also, Compo and 

Sardeshmukh (2009) had recently demonstrated the substantial influence even in a 

radiatively warming world of global SST trends on continental temperature trends. We 

were interested in determining to what extent their conclusion applied to our "Atlantic 

Rim" land masses of relatively large natural variability, to not just surface air temperature 

but also precipitation, and to what degree the changes in the tropical SSTs dominated this 

SST influence. 

 

The important role of SST variations in interannual and longer timescale climate 

variability is very well recognized. Numerous studies have shown that many aspects of 

observed climate variations around the globe can be captured in uncoupled atmospheric 

general circulation model (GCM) simulations in which the time history of the observed 

global SSTs is prescribed as lower boundary conditions (e.g. Gates 1992; Lau 1997). 

Indeed the progress in seasonal to interannual predictions is mainly attributable to this 

recognition of the role of SSTs (Goddard et al. 2001; Barnston et al. 2005). It has also 

been shown that many aspects of the response to global SST changes can be reproduced 

in simulations in which the SST changes are prescribed only in the tropics (e.g. Lau and 

Nath 1994; Lau 1997; Saravanan 1998; Graham 1994; Hoerling et al. 2001; Hoerling and 

Kumar 2003; Schneider et al. 2003; Deser et al. 2004; Hurrell et al. 2004; Schubert et al. 
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2004, Herweijer and Seager 2008, and many others). On interannual time scales, most but 

not all of these tropical SST changes are associated with ENSO, a natural oscillation of 

the tropical climate system. 

 

On longer than interannual time scales, the radiatively forced component of climate 

variations becomes progressively more important. Even on these longer time scales, 

however, the correct representation of SST changes remains important for representing 

changes over land, because the radiatively forced components of the SST changes can, 

depending on their magnitude, strongly impact the changes over land. Indeed several 

studies have suggested that such an indirect land response to radiative forcing through the 

SST response (that one may loosely call an ‘SST feedback’) is much larger than the 

direct land response to radiative forcing (Folland et al 1998, Schneider at al 2003, Bracco 

et al 2004, Compo and Sardeshmukh 2009, Hoerling et al 2009, Deser and Phillips 2009).  

 

Our own analysis here provides additional strong evidence that the spatial patterns of the 

SST variations on these longer time scales have an important influence on the spatial 

patterns of the trends even in regions remote from the SST forcing. Specifically, we show 

that the spatial patterns of the surface air temperature and precipitation trends in the 

second half of the 20th century over our Atlantic Rim land masses were strongly 

influenced by the pattern of the tropical SST warming trend over the same period. This 

conclusion is derived from two separate sets of model simulations. One set, generated 

using the same coupled atmosphere-ocean climate models used in the Fourth Assessment 

Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), uses prescribed 



 

 

5 

observed radiative forcing changes. The other set, generated using uncoupled 

atmospheric GCMs, uses observed time-varying SSTs prescribed either globally or only 

in the tropics as lower boundary conditions, but (with a few exceptions noted below) no 

explicitly specified radiative forcing changes. We first show that the uncoupled 

simulations are generally better than the coupled simulations at capturing both the 

patterns and magnitudes of the observed trends over our Atlantic Rim land masses of 

interest in the second half of the 20th century, and that this better realism is obtained even 

in simulations in which the observed SSTs are prescribed only in the tropics. We then 

show that the spatial variation of the observed tropical SST trend field is not well 

represented in the coupled simulations, even though the tropically averaged SST trend is 

very well represented. Our analysis thus points to errors in representing the pattern of the 

tropical SST trend as a major source of uncertainty in representing remote climate 

changes, and raises the hope that reducing such errors will reduce the uncertainty in 

regional climate predictions around the globe. 

 

2 Model simulations analyzed 

We used all available coupled model simulations of the period 1951-1999 from 18 

international modeling centers, generated as part of the IPCC's 20th century climate 

simulations with prescribed time-varying radiative forcings associated with greenhouse 

gases, aerosols, and solar variations. We also used additional sets of uncoupled 

atmosphere-only model simulations from 4 modeling centers, with prescribed observed 

histories of either global or tropical SSTs over this period. We thus used 163 simulations 

in all: 76 coupled simulations (CPL; Table 1), 66 uncoupled simulations with prescribed 
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global SST changes (GLB; Table 2), and 21 uncoupled simulations with the SST changes 

prescribed only in the tropics (TRP; Table 3). In the TRP runs the long-term mean annual 

cycle of SSTs was prescribed outside the tropics. The 66 uncoupled GLB simulations 

included 10 simulations with prescribed time-varying radiative forcings in addition to the 

prescribed time-varying observed SSTs. We did this mainly to reduce sampling 

uncertainty, given the evidence from previous studies (e.g., Compo and Sardeshmukh 

2009) that the direct effect of the radiative forcings in such runs (as opposed to their 

indirect effect through the SSTs) is minor on the variables considered here. 

 

As climate change indicators over our land masses of interest (in the region 20°to 75°N, 

170°W to 40°E), we chose precipitation and near-surface (2-meter) air temperature, not 

only for their intrinsic importance but also for their impact on simple measures of drought 

such as the Palmer Drought Severity Index (PDSI; Palmer 1965). We restricted our focus 

to the changes over land, both because of the better availability of observations over land, 

and to perform fair comparisons of the coupled simulations with the uncoupled 

simulations in which the observed boundary conditions (i.e. the SSTs) were prescribed 

over the oceans, but not over land.  

 

3 Observed and simulated regional climate trends 

The observed 50-year trends of annual-mean surface air temperature and precipitation 

over our land masses of interest are shown in Fig. 1. The temperature trends were derived 

from an unweighted average of observations compiled at the University of East Anglia 

Climate Research Unit (UEA-CRU; Mitchell and Jones 2005), the National Aeronautics 
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and Space Administration's Goddard Institute for Space Studies (NASA-GISS; Hansen et 

al. 2001), and the National Oceanic and Atmospheric Administration (NOAA; Smith and 

Reynolds 2005). The precipitation trends were derived from an unweighted average of 

observations compiled at UEA-CRU (Mitchell and Jones 2005), the Global Precipitation 

Climatology Centre (GPCC; Rudolf et al. 2005), and NOAA (Chen et al. 2002). These 

observational temperature and precipitation trend maps may be compared directly with 

similar maps in Fig. 1 derived from the grand ensemble mean of the 76 coupled 

simulations, and also the grand ensemble mean of the 87 uncoupled prescribed-SST 

simulations. The coupled simulations show relatively uniform warming and rather weak 

precipitation trends that differ substantially from the observed trends. For example, the 

observed cooling and moistening trends over large parts of the United States are not well 

simulated, and the observed drying trend over tropical Africa is greatly underestimated. 

These deficiencies are notably smaller in the uncoupled simulations with prescribed 

observed SSTs, suggesting a major influence of those SSTs on the trends over these land 

areas. 

 

A quantitative comparison of the air temperature and precipitation trend fields obtained 

from each of the 163 simulations with the corresponding observed trend fields is 

provided in Fig. 2a, using the format of the so-called Taylor diagram (Taylor 2001). Each 

point on a Taylor diagram depicts the normalized dot product and normalized magnitude 

of a vector (in our case, the vector of simulated trends over all land points in our domain 

of interest) with respect to a reference vector (i.e., the corresponding observed trend 

vector). The normalized dot product may also be identified with the spatial pattern 
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correlation  r , and the normalized magnitude with the root-mean-square (r.m.s.) 

magnitude ratio  A , of the simulated and observed trend fields over the land points in our 

domain. Note that to focus on the spatially varying parts of the trend fields, we removed 

the land-averaged trends from both the simulated and observed trend fields before 

computing these pattern correlations and r.m.s. magnitudes. 

 

In general, the Taylor diagrams show poor pattern correlations and r.m.s. magnitudes of 

the simulated trend fields relative to the observed fields. Given that the climate system is 

chaotic, such a poor correspondence would suggest, even if the models were "perfect" 

(i.e., if there were no errors in model formulation but a large sensitivity of the model 

integrations to initial conditions) a substantial unpredictable climate noise contribution to 

the observed trends over this 50-year interval. The Taylor diagrams also show an overall 

tendency of the trends in the prescribed-SST simulations to compare better with 

observations than the trends in the coupled simulations, suggesting that a significant 

portion of the errors in the latter are associated with errors in simulating the observed 

SSTs. Note that the SST errors are zero in the prescribed-SST simulations by 

experimental design. 

 

An important point to keep in mind concerning Taylor diagrams is that although they are 

convenient for comparing a large number of vectors (in our case, 163 simulated trend 

vectors) with a single reference vector (the observed trend vector), they do not accurately 

show how those vectors compare among themselves, particularly with respect to dot 

products (i.e. pattern correlations). Such intercomparisons are useful for many purposes. 
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In our case, they would provide valuable information on the internal consistency of the 

simulated trends. One straightforward but cumbersome way to gauge this internal 

consistency would be through construction of 163 separate Taylor diagrams that treat in 

turn each of the simulated trend vectors as the reference vector. We present instead in 

Figs. 2b and 2c an alternative and more compact depiction of such intercomparisons: 

Vector Comparison Matrix (VCM) plots. A VCM is an N×N matrix whose lower left 

triangle elements 
 
Mij show the normalized dot product (i.e., the pattern correlation 

 
rij ) of 

the i-th and j-th vectors in the intercomparison set of N vectors, and whose upper right 

triangle elements 
 
Mij  show the r.m.s. magnitude ratio (

 
Mij = Aj Ai ) of those vectors. By 

definition, all diagonal elements 
 
M

ii
are equal to 1. 

 

The pattern correlations and magnitude ratios of all possible pairs in the set of 163 

simulated trend fields are shown in Fig. 2b for air temperature and precipitation. The 

VCMs generally reveal a greater pattern consistency of the trends in the prescribed-SST 

simulations (GLB as well as TRP) than in the coupled simulations, especially for 

precipitation. This in itself is not surprising. After all, the GLB and TRP simulations use 

the observed history of SSTs over 1951-1999, whereas the SSTs are different in each of 

the 76 coupled simulations. Nonetheless, this greater consistency suggests a significant 

constraining influence of the SSTs on the climate trends over land. Furthermore, the fact 

that the GLB and TRP simulations are just as mutually consistent as they are internally 

consistent suggests that the tropical SSTs are especially important in providing this 

constraining influence. 
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The tropical influence becomes even more obvious upon comparing the ensemble-mean 

trend fields in the three separate simulation groups (CPL, GLB, and TRP) with one 

another and with the observed trend field. This is done in Fig. 2c, in the same VCM 

format. Again, consistent with a strong influence of SSTs on the trends over land, the 

pattern correlations with observations of the ensemble-mean trends in the prescribed-SST 

simulations (exceeding 0.7 for air temperature as well as precipitation) are higher than of 

those in the coupled simulations (0.3 and 0.4 for air temperature and precipitation, 

respectively). And again, consistent with the SST influence being associated primarily 

with the tropical SSTs, the ensemble-mean trend patterns in the tropically and globally 

prescribed SST simulations are correlated at levels exceeding 0.9 for both air temperature 

and precipitation. 

 

Given the chaotic nature of the climate system, one may regard each of our 163 simulated 

trend fields as comprising a forced climate signal plus unpredictable climate noise. One 

would therefore not expect any of the individual simulated trend fields to agree perfectly 

with the observed trend fields, or with one another, even if the models were "perfect". 

Even in such a scenario, however, the large discrepancies of the simulations with respect 

to both observations and one another in Figs. 2a and 2b would suggest a substantial 

unpredictable noise component in trends over intervals as long as 50 years, with 

important implications for adaptation and mitigation strategies in response to climate 

projections over such intervals. This noise component is greatly reduced, though not 

completely eliminated, by ensemble-averaging the trends in our CPL, GLB, and TRP 

simulations, which leads to a better estimate of the forced signal in each of these 
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simulation groups. However, the observed trend retains its noisy part, and so the 

agreement between the ensemble-averaged model trends and observed trends remains 

imperfect in Fig. 2c, and would remain imperfect even if the models were perfect. 

 

Figure 2 also provides an assessment of the accuracy and consistency of the magnitudes 

of the spatially varying parts of the simulated trend fields. Compared to observations, the 

magnitudes of both the precipitation and surface temperature trends are generally smaller 

in the coupled simulations than in the prescribed-SST simulations. Reducing the noise 

through ensemble averaging, as done in Fig. 2c, brings out these aspects of the 

simulations more clearly, and shows that the magnitudes in the prescribed-SST 

simulations are also more realistic. The fact that the magnitudes in the prescribed 

tropical-SST simulations are close to those in the prescribed global-SST simulations 

again highlights the critical influence of the tropical SSTs on these remote trends. 

 

4 Observed and simulated tropical SST trends 

In reality, of course, model errors also contribute to the disagreements with observations 

evident in Figs. 1 and 2. Ascertaining their sources and importance relative to climate 

noise presents an interesting challenge. The strong influence of the tropical SSTs 

suggests that we take a closer look at the tropics. Figure 3 compares the ensemble-mean 

tropical SST trend map from the coupled simulations with the observed trend map. The 

latter is derived from an unweighted average of observations compiled at the UK Met 

Office's Hadley Centre (Rayner et al. 2003), the Lamont-Doherty Earth Observatory 

(Kaplan et al. 1998), and NOAA (Smith and Reynolds 2005). The dominant impression 
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from this figure is that although the coupled simulations are realistic in capturing the 

observed overall tropical warming trend, they underestimate the substantial spatial 

variation of that observed warming trend. 

 

Figure 4 provides a quantitative comparison of the tropical SST trend field in each of the 

76 coupled simulations with the observed trend field, separately for just the area-mean 

trends (Fig. 4a), the full trend fields (Fig. 4b), and just the spatially varying parts of the 

trend fields (Fig. 4c). Consistent with the impression from Fig. 3, the pattern correlations 

of the observed and ensemble-mean simulated trend fields are quite high (~ 0.8) if the 

area means are retained, but drop to ~ 0.3 when the area means are removed. Not 

surprisingly, the individual model fields are correlated with the observed field at even 

lower levels than is the ensemble-mean field, although some do show higher correlations. 

The magnitude of the spatially varying part is also generally underestimated. 

Interestingly, although the area-mean trends in the individual simulations show a large 

spread around the observed area-mean trend (Fig. 4a), the multi-model ensemble-mean 

area-mean trend is nearly perfect in this regard.  

 

It is remarkable that the majority of the 76 simulated tropical SST trend fields have 

pattern correlations with the observed trend field of lower than 0.3 after their area means 

are removed.  Such a poor correspondence can arise either from the tropical SST 

evolution being so chaotic even on multi-decadal scales as to overwhelm the spatially 

varying part of the radiatively forced warming signal, or from model error. To clarify the 

issue, we performed extensive Monte Carlo significance tests. Specifically, we generated 
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10000 Monte Carlo samples of 76 vectors drawn from a multi-normal probability 

distribution with the same mean and covariance statistics as our 76 simulated tropical 

SST trend vectors, and identified the vector in each sample having the maximum pattern 

correlation with the observed trend vector. A histogram of the 10000 such maximum 

correlations was constructed. The mean of this distribution was 0.57, consistent with the 

maximum correlation of 0.57 in Fig. 4c, and with not a single value out of the 10000 

exceeding 0.76. To appreciate the significance of these numbers, we generated an 

additional sample of 76 vectors, compared the vectors in the 10000 samples with all the 

vectors in this 10001st sample in turn, and constructed a similar histogram of maximum 

pattern correlations. This distribution had a mean of 0.85 and a standard deviation of 

0.025. In other words, for the spatially varying part of the observed trend vector to be 

consistent with the distribution of the 76 coupled model simulated trend vectors, one 

would expect the maximum correlation in Fig. 4c with the observed vector to lie between 

0.77 and 0.93 with 99.9% probability (as indicated by the gray shaded region on Fig. 4c), 

in sharp contrast to the value of 0.57 actually obtained. This provides strong evidence that 

the spatial pattern of the observed tropical SST trend field lies well outside the space of 

the spatially varying patterns of the simulated trend fields, and points to model error as a 

major contributor to the poor correspondence of the observed and simulated trends in Fig. 

4c, and also in Fig. 4b.  

 

5 Impact of SST biases in the coupled simulations  

Thus far, our analysis has shown that the recent half-century trends in the Atlantic Rim 

regions were strongly affected by the tropical SST trends, and that the IPCC/AR4 
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coupled models were deficient in capturing the spatial variation of both sets of trends. 

One is tempted to conclude that these deficiencies are directly related. Before doing so, 

however, one needs to consider another possibility, that the errors in the Atlantic Rim 

trends are not entirely due to errors in the tropical SST trends per se, but also partly due 

to errors in the generation mechanisms of remote responses to tropical SST changes, 

associated with various climate biases in the coupled models. For concreteness, let us 

consider a simplified linear framework in which the remote anomaly response vector 
 y

 

to a tropical SST anomaly forcing vector  x  is expressed as 
  
y = G X( )  x , in which the 

"Green's Function" response matrix  G  depends upon the mean tropical SST climatology 

 X . It is then clear that that an error in 
 y

 can arise from errors in both  x  and  X . So, 

although we have shown that the coupled models have errors in their tropical SST trend 

vectors  x , it remains to be assessed to what extent those errors, and not biases in  X , are 

the main contributors to the errors in the Atlantic Rim trends 
 y

. 

 

The substantial biases of the IPCC AR4 coupled models in the tropics have been 

documented elsewhere (e.g., Lin 2007). In a study such as ours, one way to address the 

impact of the tropical SST biases on the Atlantic Rim trends could be through TRP-type 

uncoupled atmospheric GCM simulations using one specific GCM, in which the time-

varying tropical SST anomaly fields for 1951-1999 from the 76 coupled simulations 

(determined with respect to the models’ 1951-1999 SST climatology) are prescribed on 

top of the observed 1951-1999 SST climatology, generating an ensemble of simulations 

for each SST forcing series. One could then compare the ensemble-mean remote response 

trend 
 y

 obtained for each anomalous SST forcing series with that obtained for the 
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observed anomalous SST forcing series. The difference would be entirely due to errors in 

the simulated SST anomalies, since the error in the SST climatology would be zero by 

prescription. Performing such a computationally expensive numerical experiment is 

beyond the scope of this study. Fortunately, the issue can be addressed much more 

cheaply under the linear approximation 
  
y = G X( )  x , whose validity has been 

demonstrated in several studies (e.g, Barsugli and Sardeshmukh 2002, Schneider et al 

2003, Barsugli et al 2006). Under this approximation, one could estimate the Green's 

Function operator 
 
G X( )  for one specific atmospheric GCM, and directly estimate the 

impact of errors in the coupled-model simulated tropical SST trends  x  on the Atlantic 

Rim trends 
 y

 using the above linear equation. 

 

The specific atmospheric GCM we chose for this diagnosis was the Max Plank Institute 

of Meteorology's atmospheric GCM ECHAM5 (Roeckner et al. 2006), which utilizes a 

spatial discretization of T42 in the horizontal (~2.8° in latitude and longitude) and 19 

levels in vertical. We estimated 
 
G X( )  by determining the GCM's global atmospheric 

responses to localized SST anomaly "patches" imposed on top of the observed SST 

climatological annual cycle at 43 regularly spaced locations throughout the tropical 

oceans. The experimental set-up and methodology were identical to that in our previous 

study using the National Center for Atmospheric Research atmospheric GCM CCM3 

(Barsugli et al. 2006). The locations and patterns of SST patches are shown in Fig. 5. 

Specifying an area-average SST anomaly magnitude of about 0.66 °C over each patch, 

20-member ensemble integrations were performed for both warm and cold patch forcing 
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for 25 months starting 1 October. The global linear response to each patch forcing was 

defined as one-half of the difference between the responses to warm and cold forcing, 

and identified with a column of the Green’s Function matrix 
 
G X( ) . 

 

Determining such a 
 
G X( )  gives one the ability to estimate the global response to an 

arbitrary tropical SST anomaly field  x  as 
  
y = G X( )  x , i.e. as a weighted sum of the 

responses to the individual patches, with weights that are proportional to the amplitude of 

 x  over the patches. The details of this procedure are given in Barsugli et al. (2006) and 

are not repeated here. In effect, such a linear reconstruction amounts to an extremely 

inexpensive estimation of the global linear response to tropical SST changes. The linearly 

reconstructed responses of surface air temperature and precipitation over our Atlantic 

Rim land masses to the observed tropical SST trend forcing are shown in Fig. 6b. They 

compare very well with the corresponding ensemble-mean trends shown in Fig. 6a 

obtained from the fully nonlinear 16-member ensemble ECHAM5 GLB simulations of 

1951-1999 (Table 4), in terms of both pattern correlation and r.m.s magnitude, thus 

providing a strong justification of our linear diagnostic approach1. 

 

Figure 6c shows the pattern correlations and r.m.s. magnitude ratios of the linearly 

reconstructed trend responses over the Atlantic Rim land masses to the coupled-model 

                                                
1 We also reconstructed the trends using a 

 
G X( )  derived from the CCM3 patch experiment (Barsugli et 

al. 2006), and compared them over the Atlantic Rim land masses with the ensemble-mean trends from the 
CCM3 GLB simulations (Table 2). The pattern correlations (r.m.s. magnitude ratios) were 0.70 (0.85) and 
0.92 (1.11) for surface temperature and precipitation. With the land-averaged trends removed, the pattern 
correlations (r.m.s. magnitude ratios) were 0.68 (0.88) and 0.92 (1.10) for surface and temperature and 
precipitation.  
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simulated tropical SST trends with the corresponding observed trend fields. As in Fig. 2, 

only the spatially varying parts of the trend fields are compared. Interestingly, reducing 

(although not completely eliminating) the effect of the tropical SST biases by using the 

same “correct” 
 
G X( )  operator in all cases yields a much improved simulation of the 

remote air temperature trend. Indeed the skill of the reconstructed air temperature trend 

using the simulated ensemble-mean SST trend field is now close to that obtained using 

the observed SST trend field, which is itself very close to skill of the ensemble-mean air 

temperature trend in the ECHAM5 GLB simulations2. The improvement is not as marked 

in the simulation of the remote precipitation trends. Overall, this linear diagnosis suggests 

that the tropical SST biases (i.e. the errors in  X ) of the coupled models have a much 

greater impact on the simulation of the remote temperature trends than the remote 

precipitation trends. Note however, that the errors in  x  do matter even for the remote 

temperature trends, as confirmed through additional numerical experiments described 

below. 

 

6 Impact of spatial variations of the tropical SST trend 

Given the importance of the tropical SST trend  x  in generating the remote trends 
 y

 in 

our Atlantic Rim regions, we provide further evidence that the spatially varying part of  x  

is important in this regard. For convenience let us write  x  as a sum of its tropically 

averaged and spatially varying parts as   x = [x]+x* . The main conclusion from Fig. 4 was 

that the multi-model ensemble-mean   [x]  from our set of 76 coupled simulations matches 

                                                
2 Note that although the observed tropical SST trends are identical in the reconstruction and the GLB 
simulations, they produce slightly different trend responses around the globe because the reconstruction is 
linear and the GLB simulations are nonlinear. 
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the observed   [x]  ( = 0.43 °C per 50 years) almost perfectly, but the spatially varying part 

  
x*  does not. To assess the impact of   [x]  on 

 y
, we performed three additional 50-year 

integrations with the ECHAM5 model (see Table 4): a control run (CTL) with 

climatological SSTs  X , another run (TRF) with  X + x , and a third run (TRM) with 

  X + [x] . The Atlantic Rim responses of surface air temperature and precipitation to the  x  

and   [x]  trend forcings are shown in Figs. 7a and 7b, respectively. The responses to the  x  

trend forcing are very similar to the trends obtained in the ECHAM GLB simulations 

(Fig. 6a), with pattern correlations exceeding 0.8. The responses to the   [x]  trend forcing, 

however, differ substantially from the trends in the ECHAM GLB simulations, especially 

for precipitation (see also Table 5). The remote temperature response is relatively less 

affected by ignoring 
  
x* , but the pattern correlation of its spatially varying part with that 

of the ECHAM5 GLB temperature trend field is still modest (0.51). 

 

The distinction between the dynamics of the remote air temperature and precipitation 

trend responses arises basically from the fact that air temperature is related to 

geopotential heights whereas precipitation is related to jet structure i.e. to the horizontal 

gradients of the geopotential heights. The relatively stronger impact of 
  
x*  on the remote 

precipitation trend is thus associated with a relatively stronger impact of 
  
x*  on the 

strength and position of the upper tropospheric jets. Figure 8 shows the ensemble-mean 

50-year trends of northern hemispheric 200 hPa heights and zonal winds and tropical 

precipitation in the GLB simulations, alongside the corresponding responses to the  x  and 

  [x]  tropical SST trend forcings in the TRF and TRM experiments. As in Fig 7, the 

responses to the  x  forcing clearly compare much better with the GLB trends than do the 



 

 

19 

responses to the   [x]  forcing. In particular, including the 
  
x*  portion in the  x  trend forcing 

yields a much stronger tropical precipitation response and a much stronger 200 hPa jet 

response, especially over the PNA sector. The spatially uniform   [x]  forcing produces a 

much weaker tropical precipitation response and consequently a much weaker 200 hPa jet 

response. The unrealistically weak amplitude of 
  
x*  in the coupled simulations (Fig. 4) is 

thus the primary cause of the unrealistically weak amplitude and poor geographical 

structure of the remote precipitation trends over the Atlantic Rim land masses in those 

simulations. 

 

7 Observed and simulated drought trends  

Given the considerable uncertainty and/or error in capturing the recent trends of surface 

air temperature and precipitation on regional scales in the coupled simulations, one might 

wonder how similar uncertainties and/or errors in regional climate projections might 

impact mitigation and adaptation responses to climate change. One way to address this 

issue, especially from a socio-economically relevant drought perspective (Wilhite 2000), 

is to examine trends in a drought index such as the PDSI. The PDSI is a combined 

integral measure of anomalous surface air temperature and precipitation for assessing the 

deficiency or surplus of soil moisture. As a widely used hydroclimatic indicator, it has 

proven to be an effective measure of long-term droughts and wet spells (Dai et al. 1998; 

Dai et al. 2004). 

 

We estimated the 1951 to 1999 trends of annual-mean PDSI over the non-glaciated 

portions of our Atlantic Rim land masses of interest using observations as well as all our 
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163 model simulations. The monthly PDSI values Pj  in the simulations were estimated 

from a PDSI model (Palmer 1965) at each grid point as, 

   
P

j
= 0.897 P

j-1
+

1

3
Kd

j
, 

where  K  is Palmer's "climate characteristic" at the grid point, and 
 
d

j
 is the difference 

between the actual precipitation in month j and the expected precipitation needed to 

maintain a normal soil moisture level, which is a function of surface air temperature and 

precipitation. We calibrated this model using unweighted averages of surface air 

temperature and precipitation records in the period 1979-1999, in which the quality and 

quantity of observations were greatly improved due to the availability of satellite data. 

The specification of water holding capacity in the PDSI model was based on the 

climatology compiled by Webb et al. (1993). 

 

The observed PDSI trend map is shown in Fig. 9a, and similar trend maps derived from 

the ensemble means of the 76 CPL, 66 GLB, and 21 TRP simulations are shown in Figs. 

9b and 9c. The coupled simulations indicate a trend pattern of widespread drought that is 

seriously at odds with the observations. The fact that over most of North America even 

the sign of the simulated trend is opposite to that of the observed is disturbing. The 

uncoupled simulations with prescribed observed SSTs are generally more realistic in this 

regard, although not over Northern Europe. And again, the simulations with prescribed 

tropical SST changes are just as realistic as those with prescribed global SST changes. 

The poor representation of tropical SST trends in the coupled simulations is thus also 
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implicated in the poor representation of these socio-economically important PDSI 

trends3. 

 

8 Summary and discussion 

We find that the patterns of recent climate trends over North America, Greenland, 

Europe, and North Africa are generally less well captured by state-of-the-art coupled 

atmosphere-ocean models with prescribed observed radiative forcing changes than even 

by uncoupled atmospheric models without those radiative forcing changes, but with the 

observed SST changes prescribed only in the tropics. The basic reason for this is that 

tropical SSTs are poorly represented in the coupled simulations. Errors in representing 

both the observed SST climatology and the spatial variation of the SST trends are 

important. The latter error, in particular, has a large impact on the simulation of both 

local and remote precipitation trends. The sensitivity of the global mean climate to the 

pattern of tropical oceanic warming has already been highlighted in some recent studies 

(e.g., Barsugli et al. 2006). Our study provides evidence of a similar large sensitivity also 

of regional climate changes, even in regions remote from the tropics. The fact that even 

with full atmosphere-ocean coupling, climate models with prescribed observed radiative 

forcing changes do not capture the pattern of the observed tropical oceanic warming 

suggests that either the radiatively forced component of this warming pattern was 

sufficiently small in recent decades to be dwarfed by natural tropical SST variability, or 

that the coupled models are misrepresenting some important tropical physics. We have 

                                                
3 Dai et al. (2004) show that the global PDSI trends over 1950-2002 can be mostly explained by changes of 
precipitation (see their Fig. 7). The poor representation of the PDSI trends in the coupled simulations in 
Fig. 9 is also mostly associated with the poor representation of the regional precipitation trends in those 
simulations, which is itself strongly associated with the poor representation of the spatial variation of the 
tropical SST trends in those simulations. 
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argued that the discrepancy of the simulated trends with respect to observations is not 

entirely due to climate noise but is at least partly due to model errors. The existence of 

tropical SST biases in the coupled models, whose impact on remote trends is also 

significant, further supports our argument. If correct, our assessment would raise the hope 

that reducing such tropical SST errors would lead to significantly improved regional 

climate predictions around the globe. 
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Figure Legends 

Fig. 1 Trends of annual-mean surface air temperature (left) and precipitation (right) over 

1951-1999 derived from (a) observations, (b) multi-model ensemble-mean coupled 

climate model simulations, and (c) multi-model ensemble-mean uncoupled atmospheric 

model simulations with prescribed observed time varying SSTs. Annual averages are 

over July to June. All simulation and observational data were interpolated to a common ~ 

2.8°×2.8° latitude-longitude grid and then truncated to total spherical wavenumber 12 to 

emphasize subcontinental-scale features (Sardeshmukh and Hoskins 1984). 

 

Fig. 2 (a) Taylor diagram comparisons of simulated and observed trends over 1951-1999 

of surface air temperature (left) and precipitation (right) over land areas in the region 20° 

to 75°N, 170°W to 40°E. Each dot depicts the pattern correlation  r  (along the angular 

coordinate) and r.m.s. magnitude ratio  A  (along the radial coordinate) of a simulated 

trend field and the observed trend field. Red dots: coupled simulations (CPL); Dark blue 

squares: uncoupled simulations with prescribed global SST changes (GLB); Orange 

squares: uncoupled GLB simulations with additional prescribed radiative forcing 

changes; Light blue squares: uncoupled simulations with SST changes prescribed only in 

the tropics (TRP). For reference, the temperature and precipitation trend fields obtained 

from the individual observational datasets (black triangles) are also compared with the 

average of these observational datasets. (b) Vector Comparison Matrices (VCMs) of the 

trend vectors from the 76 CPL, 66 GLB, and 21 TRP simulations. The lower left triangle 

depicts the pattern correlations 
 
r
ij
and the upper right elements depict the r.m.s. magnitude 



 

 

32 

ratio 
 
A

j
A

i
 of each pair i,j among the 163 simulated trend vectors. (c) VCMs of the 

simulated ensemble-mean and observed trend vectors. 

 

Fig. 3 Trends of annual-mean tropical (30°S-30°N) SSTs over 1951-1999 derived from 

(a) observations and (b) the multi-model ensemble-mean of the coupled simulations. All 

simulation and observational data were interpolated to a common ~ 2.8°×2.8° latitude-

longitude grid and then truncated to total spherical wave number 21 to focus on the 

comparisons of larger scale features (Sardeshmukh and Hoskins 1984). 

 

Fig. 4 (a) Estimated probability density function of the magnitude ratio of the 76 area-

averaged simulated tropical SST trends with the observed trend. (b) Taylor diagram 

comparisons of the simulated and observed tropical SST trend fields with their areal 

means retained. (c) Taylor diagram comparisons of the simulated and observed tropical 

SST trend fields with their areal means removed. Red dots: coupled simulations (CPL); 

Black squares: ensemble-mean of coupled simulations. For reference, the trend fields 

obtained from the individual observational datasets (black triangles) are also compared 

with the average of these observational datasets. The gray shading in (b, c) indicates 

99.9% probability bounds for the observed trend vector to be consistent with the 

probability distribution of the 76 simulated trend vectors (see text for details). 

 

Fig. 5 The location of the SST anomaly patches prescribed in the SST patch experiments. 

For reference, the standard deviation of annually averaged tropical SSTs from the 

HadISST dataset (Rayner et al. 2003) during 1951-1999 is also shown. Note that the 
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Indo-Pacific and Atlantic patches are of different sizes. Their full extent is illustrated by 

the gray-shaded patches at the bottom of figure for the Indo-Pacific (left) and Atlantic 

(right) patches. 

 

Fig. 6 (a) Trends of annual-mean surface air temperature (left) and precipitation (right) 

over 1951-1999 derived from the ensemble-mean uncoupled ECHAM5 simulations with 

prescribed global SST changes (ECHAM5 GLB; see Table 4). (b) The linearly 

reconstructed trend response to the observed tropical SST trend over 1951-1999 using a 

linear response operator G estimated from independent patch experiments. The pattern 

correlation  r  and r.m.s. magnitude ratio  A  of the fields in (a) and (b) with their area 

means retained, and 
  
r*  and 

  
A*  with their area means removed, are also shown. (c) 

Pattern correlation and r.m.s. magnitude ratio with respect to observations of the linearly 

reconstructed surface air temperature (left) and precipitation (right) trends over the land 

areas in (a) and (b). The filled black and red circles show the results for the ensemble-

mean trends obtained in the uncoupled ECHAM5 GLB and coupled IPCC/AR4 

simulations, and the filled black and red squares show the results for the linearly 

reconstructed trends obtained using the observed and coupled-model simulated ensemble-

mean tropical SST trends. The green arrows indicate the improvement of the trend 

comparison with observations obtained by removing the effect of the climate biases in the 

coupled simulations. See text for details. All simulation and observational fields were 

truncated to total spherical wave number 12 to focus on the comparisons of larger scale 

features (Sardeshmukh and Hoskins 1984). 
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Fig. 7 Annual-mean response of (left) surface air temperature and (right) precipitation (a) 

to the observed tropical SST trend (TRF; see Fig. 3a), and (b) to its spatially uniform 

component (TRM). All simulation data were truncated to total spherical wave number 12 

to focus on the comparisons of larger scale features (Sardeshmukh and Hoskins 1984). 

 

Fig. 8 (a) Trends of annual-mean 200-hPa heights and zonal winds (top) and tropical 

precipitation (bottom) over 1951-1999 in the ensemble-mean uncoupled ECHAM5 

simulations with prescribed global time-varying SSTs  (ECHAM5 GLB). (b-c) Annual-

mean response of 200-hPa heights and zonal winds (top) and tropical precipitation 

(bottom) to the (b) observed tropical SST trend (TRF, Fig. 3a), and (c) to its spatially 

uniform component (TRM). The zero contour in the 200-hPa height trend and response 

fields is thickened and negative contours are dashed. 

 

Fig. 9 Trends of annual-mean PDSI in non-glaciated regions over 1951-1999, derived 

from (a) observations, (b) multi-model ensemble mean of the coupled simulations, and 

(c) multi-model ensemble mean of the prescribed SST simulations, with the SST changes 

prescribed globally (GLB) and only in the tropics (TRP). Warm and cold colors (negative 

and positive values) indicate a trend towards stronger and weaker droughts, respectively, 

over this period. 

 



 

 

35 

Table 1 Description of the coupled climate model simulations used. The nomenclature 
followed is that in the archive at the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI). All simulations were performed as a part of IPCC’s 20th 
century simulations using the best available estimates of the time-varying 20th century 
radiative forcings associated with changes in greenhouse gases, aerosols, and solar 
forcing. Columns show the name of the coupled climate model, the number N of 
ensemble members, the atmospheric horizontal discretization (s: spectral, g: gridpoint) 
and resolution (longitude × latitude, number of vertical levels), the oceanic vertical 
coordinate (z: z-, σ: sigma-, ρ: isopycnic-, and hy: hybrid-coordinate) and resolution 
(longitude × latitude, number of vertical levels), and the reference publication for the 
model. For further details of the models, see http://www-pcmdi.llnl.gov. All data are 
available at the PCMDI archive. 
 
 
 
 
(Continued in next page) 
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Model N Atmosphere Ocean Reference 

BCCR-BCM2.0 1 s T63, L31 ρ 1.5°×0.5-1.5°, L35 Furevik et al. (2003) 
CGCM3.1(T47) 5 s T47, L31 z 1.85°×1.85°, L29 Kim et al. (2002) 
CGCM3.1(T63) 1 s T63, L31 z 1.4°×0.94°, L29 Kim et al. (2002) 
CNRM-CM3 1 s T63, L45 z 2°×0.5-2°, L31 Salas-Mélia et al. (2005) 
CSIRO-Mk3.0 3 s T63, L18 z 1.875°×0.5-0.84°, L31 Gordon et al. (2002) 
CSIRO-Mk3.5 3 s T63, L18 z 1.875°×0.5-0.84°, L31 Gordon et al. (2002) 
GFDL-CM2.0 3 g 2.5°×2°, L24 z 1°×1/3-1°, L50 Delworth et al. (2006) 
GFDL-CM2.1 3 g 2.5°×2°, L24 z 1°×1/3-1°, L50 Delworth et al. (2006) 
GISS-AOM 2 g 4°×3°, L12 z 4°×3°, L16 Lucarini and Russell (2002) 
GISS-EH 5 g 5°×4°, L20 hy 2°×2°, L16 Hansen et al. (2007) 
GISS-ER 9 g 5°×4°, L20 z 5°×4°, L13 Hansen et al. (2007) 
FGOALS-g1.0 3 s T42, L26 z 2°×2°, L33 Yu et al. (2004) 
INGV-SXG 1 s T106, L19 z 2°×1-2°, L31 Gualdi et al. (2006) 
INM-CM3.0 1 g 5°×4°, L21 σ 2.5°×2°, L33 Volodin and Diansky (2004) 
IPSL-CM4 1 g 3.75°×2.5°, L19 z 2°×1-2°, L31 Marti et al. (2005) 
MIROC3.2(hires) 1 s T106, L53 z 0.28125°×0.1875°, L47 K-1 model developers (2004) 
MIROC3.2(medres) 3 s T42, L20 z 1.4°×0.5-1.4°, L43 K-1 model developers (2004) 
ECHO-G 5 s T30, L19 z 2.8°×0.5-2.8°, L20 Min et al. (2005) 
ECHAM5/MPI-OM 4 s T63, L31 z 1.5°×1.5, L40 Jungclaus et al. (2006) 
MRI-CGCM2.3.2 5 s T42, L30 z 2.5°×0.5-2.0°, L23 Yukimoto and Noda (2002) 
CCSM3 8 s T85, L26 z 1.1°×0.27-1.1°, L40 Collins et al. (2006) 
PCM 4 s T42, L18 z 2/3°×1/2°, L32 Washington et al. (2000) 
UKMO-HadCM3 2 g 3.75°×2.5°, L19 z 1.25°×1.25, L30 Gordon et al. (2000) 
UKMO-HadGEM1 2 g 1.875°×1.25°, L38 z 1.°×1/3-1°, L40 Johns et al. (2006) 
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Table 2 Description of the uncoupled atmospheric GCM simulations used. All 
simulations were performed by prescribing the observed time history of global SSTs as 
lower boundary conditions. Columns show the name of the model, the number N of 
simulations, the horizontal discretization (s: spectral, g: gridpoint) and resolution 
(longitude × latitude, number of vertical levels), and the reference publication for the 
ensemble. 

 

Model N Horizontal discretization and 
resolution Reference 

GFDL-AM2.14a,c 10 g 2.5°×2°, L24 Anderson et al. (2004) 
NCAR-CCM3 12 s T42, L18 Hurrell et al. (2004) 
ECHAM4.5c 24 s T42, L18 Roeckner et al. (1996) 
NCAR-CAM3a 5 s T85, L26 Hurrell et al. (2006) 
NCAR-CAM3a 5 s T42, L26 Hurrell et al. (2006) 
NCAR-CAM3a,b 5 s T85, L26 Deser and Phillips (2008) 
NCAR-CAM3a,b 5 s T42, L26 Deser and Phillips (2008) 

 
a  The time history of sea-ice concentration were also prescribed. 
b  The time histories of 20th century natural and anthropogenic forcings were also prescribed. These 

forcings are the same as in the 20th century CCSM3 simulations described in Table 1. 
c These model data are available at the International Research Institute (http://iridl.ldeo.columbia.edu). 
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Table 3 Description of the uncoupled atmospheric GCM simulations with prescribed 
tropical SSTs. All simulations were performed by prescribing the time history of 
observed SSTs in the tropical belt 30°S-30°N, and the observed long-term mean SST 
annual cycle outside the tropics. Columns show the name of the model, the number N of 
simulations, the horizontal discretization (s: spectral) and resolution (longitude × latitude, 
number of vertical levels), and the reference publication for the ensemble. 
 

Model N Horizontal discretization and 
resolution Reference 

NCAR-CCM3 11 s T42, L18 Hurrell et al. (2004) 
NCAR-CAM3 5 s T85, L26 Deser and Phillips (2008) 
NCAR-CAM3 5 s T42, L26 Deser and Phillips (2008) 

 



 

 

39 

Table 4 Description of the uncoupled MPI-ECHAM5 simulations with prescribed 
observed SSTs. The ECHAM5 GLB simulations were performed by prescribing the 
observed time history of global SSTs. The CTL simulation was performed by prescribing 
only the observed SST climatology (long-term mean plus seasonal cycle). The TRF and 
TRM simulations were performed by imposing the observed tropical (30°S-30°N) SST 
trend forcing over 1951-1999 (expressed as an SST change over 50 years, see Fig. 3a), 
and only its spatially uniform part (0.43 °C), respectively, on top of the observed SST 
climatology. Columns show the name of the experiments, the number N of simulations 
for ECHAM GLB and the integration lengths for the CTL, TRF, and TRM simulations, 
the horizontal discretization (s: spectral) and resolution (longitude × latitude, number of 
vertical levels), and the reference publication for the experiment. 
 

Experiment N Horizontal discretization and 
resolution Reference 

ECHAM5 GLB 16 s T42, L19 Roeckner et al. (2006)a 
CTL 50 yrs s T42, L19  
TRF 50 yrs s T42, L19  
TRM 50 yrs s T42, L19  

 
a These model data are available at the International Research Institute (http://iridl.ldeo.columbia.edu). 
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Table 5 The pattern correlations and r.m.s. magnitude ratios of the surface air 
temperature (ΔT) and precipitation (ΔP) responses in the TRF and TRM tropical SST 
trend forcing experiments with respect to the ensemble-mean trends obtained in the 
ECHAM5 GLB simulations (Fig. 6a) over the Atlantic Rim land masses. The numbers 
show the results obtained when the land-averaged values are retained, and those in 
parentheses when they are removed, from the response and trend fields.  

 

 Pattern correlation (r) r.m.s. Amplitude ratio (A) 

ΔT  0.83 (  0.79) 0.78 (0.70) TRF-CTL 
ΔP  0.85 (  0.86) 0.86 (0.84) 
ΔT  0.65 (  0.51) 0.90 (0.61) TRM-CTL 
ΔP -0.28 (-0.29) 0.45 (0.41) 
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Fig. 1 Trends of annual-mean surface air temperature (left) and precipitation (right) over 1951-
1999 derived from (a) observations, (b) multi-model ensemble-mean coupled climate model 
simulations, and (c) multi-model ensemble-mean uncoupled atmospheric model simulations with 
prescribed observed time varying SSTs. Annual averages are over July to June. All simulation 
and observational data were interpolated to a common ~ 2.8°×2.8° latitude-longitude grid and 
then truncated to total spherical wavenumber 12 to emphasize subcontinental-scale features 
(Sardeshmukh and Hoskins 1984). 
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Fig. 2 (a) Taylor diagram comparisons of simulated and observed trends over 1951-1999 of 
surface air temperature (left) and precipitation (right) over land areas in the region 20° to 75°N, 
170°W to 40°E. Each dot depicts the pattern correlation  r  (along the angular coordinate) and 
r.m.s. magnitude ratio  A  (along the radial coordinate) of a simulated trend field and the observed 
trend field. Red dots: coupled simulations (CPL); Dark blue squares: uncoupled simulations with 
prescribed global SST changes (GLB); Orange squares: uncoupled GLB simulations with 
additional prescribed radiative forcing changes; Light blue squares: uncoupled simulations with 
SST changes prescribed only in the tropics (TRP). For reference, the temperature and 
precipitation trend fields obtained from the individual observational datasets (black triangles) are 
also compared with the average of these observational datasets. (b) Vector Comparison Matrices 
(VCMs) of the trend vectors from the 76 CPL, 66 GLB, and 21 TRP simulations. The lower left 
triangle depicts the pattern correlations 

 
r
ij
and the upper right elements depict the r.m.s. 

magnitude ratio 
 
A

j
A

i
 of each pair i,j among the 163 simulated trend vectors. (c) VCMs of the 

simulated ensemble-mean and observed trend vectors. 
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Fig. 3 Trends of annual-mean tropical (30°S-30°N) SSTs over 1951-1999 derived from (a) 
observations and (b) the multi-model ensemble-mean of the coupled simulations. All simulation 
and observational data were interpolated to a common ~ 2.8°×2.8° latitude-longitude grid and 
then truncated to total spherical wave number 21 to focus on the comparisons of larger scale 
features (Sardeshmukh and Hoskins 1984). 
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Fig. 4 (a) Estimated probability density function of the magnitude ratio of the 76 area-averaged 
simulated tropical SST trends with the observed trend. (b) Taylor diagram comparisons of the 
simulated and observed tropical SST trend fields with their areal means retained. (c) Taylor 
diagram comparisons of the simulated and observed tropical SST trend fields with their areal 
means removed. Red dots: coupled simulations (CPL); Black squares: ensemble-mean of 
coupled simulations. For reference, the trend fields obtained from the individual observational 
datasets (black triangles) are also compared with the average of these observational datasets. 
The gray shading in (b, c) indicates 99.9% probability bounds for the observed trend vector to be 
consistent with the probability distribution of the 76 simulated trend vectors (see text for details). 
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Fig. 5 The location of the SST anomaly patches prescribed in the SST patch experiments. For 
reference, the standard deviation of annually averaged tropical SSTs from the HadISST dataset 
(Rayner et al. 2003) during 1951-1999 is also shown. Note that the Indo-Pacific and Atlantic 
patches are of different sizes. Their full extent is illustrated by the gray-shaded patches at the 
bottom of figure for the Indo-Pacific (left) and Atlantic (right) patches. 
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Fig. 6 (a) Trends of annual-mean surface air temperature (left) and precipitation (right) over 1951-
1999 derived from the ensemble-mean uncoupled ECHAM5 simulations with prescribed global 
SST changes (ECHAM5 GLB; see Table 4). (b) The linearly reconstructed trend response to the 
observed tropical SST trend over 1951-1999 using a linear response operator G estimated from 
independent patch experiments. The pattern correlation  r  and r.m.s. magnitude ratio  A  of the 
fields in (a) and (b) with their area means retained, and 

  
r*  and 

  
A*  with their area means 

removed, are also shown. (c) Pattern correlation and r.m.s. magnitude ratio with respect to 
observations of the linearly reconstructed surface air temperature (left) and precipitation (right) 
trends over the land areas in (a) and (b). The filled black and red circles show the results for the 
ensemble-mean trends obtained in the uncoupled ECHAM5 GLB and coupled IPCC/AR4 
simulations, and the filled black and red squares show the results for the linearly reconstructed 
trends obtained using the observed and coupled-model simulated ensemble-mean tropical SST 
trends. The green arrows indicate the improvement of the trend comparison with observations 
obtained by removing the effect of the climate biases in the coupled simulations. See text for 
details. All simulation and observational fields were truncated to total spherical wave number 12 
to focus on the comparisons of larger scale features (Sardeshmukh and Hoskins 1984). 
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Fig. 7 Annual-mean response of (left) surface air temperature and (right) precipitation (a) to the 
observed tropical SST trend (TRF; see Fig. 3a), and (b) to its spatially uniform component (TRM). 
All simulation data were truncated to total spherical wave number 12 to focus on the comparisons 
of larger scale features (Sardeshmukh and Hoskins 1984). 
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Fig. 8 (a) Trends of annual-mean 200-hPa heights and zonal winds (top) and tropical precipitation 
(bottom) over 1951-1999 in the ensemble-mean uncoupled ECHAM5 simulations with prescribed 
global time-varying SSTs  (ECHAM5 GLB). (b-c) Annual-mean response of 200-hPa heights and 
zonal winds (top) and tropical precipitation (bottom) to the (b) observed tropical SST trend (TRF, 
Fig. 3a), and (c) to its spatially uniform component (TRM). The zero contour in the 200-hPa height 
trend and response fields is thickened and negative contours are dashed. 
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Fig. 9 Trends of annual-mean PDSI in non-glaciated regions over 1951-1999, derived from (a) 
observations, (b) multi-model ensemble mean of the coupled simulations, and (c) multi-model 
ensemble mean of the prescribed SST simulations, with the SST changes prescribed globally 
(GLB) and only in the tropics (TRP). Warm and cold colors (negative and positive values) indicate 
a trend towards stronger and weaker droughts, respectively, over this period. 

 


