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Abstract

We demonstrate the separation of the complexity class NP from its subclass P. Throughout
our proof, we observe that the ability to compute a property on structures in polynomial time is
intimately related to the statistical notions of conditional independence and sufficient statistics.
The presence of conditional independencies manifests in the form of economical parametriza-
tions of the joint distribution of covariates. In order to apply this analysis to the space of so-
lutions of random constraint satisfaction problems, we utilize and expand upon ideas from
several fields spanning logic, statistics, graphical models, random ensembles, and statistical
physics.

We begin by introducing the requisite framework of graphical models for a set of interacting
variables. We focus on the correspondence between Markov and Gibbs properties for directed
and undirected models as reflected in the factorization of their joint distribution, and the num-
ber of independent parameters required to specify the distribution.

Next, we build the central contribution of this work. We show that there are fundamental
conceptual relationships between polynomial time computation, which is completely captured
by the logic FO(LFP) on some classes of structures, and certain directed Markov properties
stated in terms of conditional independence and sufficient statistics. In order to demonstrate
these relationships, we view a LFP computation as “factoring through” several stages of first
order computations, and then utilize the limitations of first order logic. Specifically, we exploit
the limitation that first order logic can only express properties in terms of a bounded number
of local neighborhoods of the underlying structure.

Next we introduce ideas from the 1RSB replica symmetry breaking ansatz of statistical
physics. We recollect the description of the d1RSB clustered phase for random k-SAT that
arises when the clause density is sufficiently high. In this phase, an arbitrarily large fraction
of all variables in cores freeze within exponentially many clusters in the thermodynamic limit,
as the clause density is increased towards the SAT-unSAT threshold for large enough k. The
Hamming distance between a solution that lies in one cluster and that in another is O(n).

Next, we encode k-SAT formulae as structures on which FO(LFP) captures polynomial time.
By asking FO(LFP) to extend partial assignments on ensembles of random k-SAT, we build dis-
tributions of solutions. We then construct a dynamic graphical model on a product space that
captures all the information flows through the various stages of a LFP computation on ensem-
bles of k-SAT structures. Distributions computed by LFP must satisfy this model. This model
is directed, which allows us to compute factorizations locally and parameterize using Gibbs
potentials on cliques. We then use results from ensembles of factor graphs of random k-SAT
to bound the various information flows in this directed graphical model. We parametrize the
resulting distributions in a manner that demonstrates that irreducible interactions between co-
variates — namely, those that may not be factored any further through conditional independen-
cies — cannot grow faster than poly(log n) in the LFP computed distributions. This character-
ization allows us to analyze the behavior of the entire class of polynomial time algorithms on
ensembles simultaneously.

Using the aforementioned limitations of LFP, we demonstrate that a purported polynomial
time solution to k-SAT would result in solution space that is a mixture of distributions each
having an exponentially smaller parametrization than is consistent with the highly constrained
d1RSB phases of k-SAT. We show that this would contradict the behavior exhibited by the so-
lution space in the d1RSB phase. This corresponds to the intuitive picture provided by physics
about the emergence of extensive (meaning O(n)) long-range correlations between variables in



this phase and also explains the empirical observation that all known polynomial time algo-
rithms break down in this phase.

Our work shows that every polynomial time algorithm must fail to produce solutions to
large enough problem instances of k-SAT in the d1RSB phase. This shows that polynomial
time algorithms are not capable of solving NP-complete problems in their hard phases, and
demonstrates the separation of P from NP.
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1. Introduction

The P
?
= NP question is generally considered one of the most important and far reaching

questions in contemporary mathematics and computer science.
The origin of the question seems to date back to a letter from Gödel to Von Neumann in

1956 [Sip92]. Formal definitions of the class NP awaited work by Edmonds [Edm65], Cook
[Coo71], and Levin [Lev73]. The Cook-Levin theorem showed the existence of complete prob-
lems for this class, and demonstrated that SAT– the problem of determining whether a set of
clauses of Boolean literals has a satisfying assignment – was one such problem. Later, Karp
[Kar72] showed that twenty-one well known combinatorial problems, which include TRAV-
ELLING SALESMAN, CLIQUE, and HAMILTONIAN CIRCUIT, were also NP-complete. In subse-
quent years, many problems central to diverse areas of application were shown to be NP-complete
(see [GJ79] for a list). If P 6= NP, we could never solve these problems efficiently. If, on the
other hand P = NP, the consequences would be even more stunning, since every one of these
problems would have a polynomial time solution. The implications of this on applications such
as cryptography, and on the general philosophical question of whether human creativity can be
automated, would be profound.

The P
?
= NP question is also singular in the number of approaches that researchers have

brought to bear upon it over the years. From the initial question in logic, the focus moved to
complexity theory where early work used diagonalization and relativization techniques. How-

ever, [BGS75] showed that these methods were perhaps inadequate to resolve P
?
= NP by

demonstrating relativized worlds in which P = NP and others in which P 6= NP (both re-
lations for the appropriately relativized classes). This shifted the focus to methods using cir-
cuit complexity and for a while this approach was deemed the one most likely to resolve the
question. Once again, a negative result in [RR97] showed that a class of techniques known as
“Natural Proofs” that subsumed the above could not separate the classes NP and P, provided
one-way functions exist.

Owing to the difficulty of resolving the question, and also to the negative results mentioned

above, there has been speculation that resolving the P
?
= NP question might be outside the

domain of mathematical techniques. More precisely, the question might be independent of
standard axioms of set theory. The first such results in [HH76] show that some relativized

versions of the P
?
= NP question are independent of reasonable formalizations of set theory.

The influence of the P
?
= NP question is felt in other areas of mathematics. We mention

one of these, since it is central to our work. This is the area of descriptive complexity theory
— the branch of finite model theory that studies the expressive power of various logics viewed
through the lens of complexity theory. This field began with the result [Fag74] that showed
that NP corresponds to queries that are expressible in second order existential logic over fi-
nite structures. Later, characterizations of the classes P [Imm86], [Var82] and PSPACE over
ordered structures were also obtained.

There are several introductions to the P
?
= NP question and the enormous amount of re-
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1. INTRODUCTION 4

search that it has produced. The reader is referred to [Coo06] for an introduction which also
serves as the official problem description for the Clay Millenium Prize. An older excellent re-
view is [Sip92]. See [Wig07] for a more recent introduction. Most books on theoretical computer
science in general, and complexity theory in particular, also contain accounts of the problem and
attempts made to resolve it. See the books [Sip96] and [BDG95] for standard references.

Preliminaries and Notation

Treatments of standard notions from complexity theory, such as definitions of the complexity
classes P, NP, PSPACE, and notions of reductions and completeness for complexity classes,
etc. may be found in [Sip96, BDG95].

Our work will span various developments in three broad areas. While we have endeavored
to be relatively complete in our treatment, we feel it would be helpful to provide standard
textual references for these areas, in the order in which they appear in the work. Additional
references to results will be provided within the chapters.

Standard references for graphical models include [Lau96] and the more recent [KF09]. For an
engaging introduction, please see [Bis06, Ch. 8]. For an early treatment in statistical mechanics
of Markov random fields and Gibbs distributions, see [KS80].

Preliminaries from logic, such as notions of structure, vocabulary, first order language, mod-
els, etc., may be obtained from any standard text on logic such as [Hod93]. In particular, we re-
fer to [EF06, Lib04] for excellent treatments of finite model theory and [Imm99] for descriptive
complexity.

For a treatment of the statistical physics approach to random CSPs, we recommend [MM09].
An earlier text is [MPV87].

1.1 Synopsis of Proof

This proof requires a convergence of ideas and an interplay of principles that span several areas
within mathematics and physics. This represents the majority of the effort that went into con-
structing the proof. Given this, we felt that it would be beneficial to explain the various stages
of the proof, and highlight their interplay. The technical details of each stage are described in
subsequent chapters.

Consider a system of n interacting variables such as is ubiquitous in mathematical sciences.
For example, these may be the variables in a k-SAT instance that interact with each other
through the clauses present in the k-SAT formula, or n Ising spins that interact with each other
in a ferromagnet. Through their interaction, variables exert an influence on each other, and af-
fect the values each other may take. The proof centers on the study of logical and algorithmic
constructs where such complex interactions factor into “simpler” ones.

The factorization of interactions can be represented by a corresponding factorization of the
joint distribution of the variables over the space of configurations of the n variables subject to
the constraints of the problem. It has been realized in the statistics and physics communities for
long that certain multivariate distributions decompose into the product of a few types of factors,
with each factor itself having only a few variables. Such a factorization of joint distributions into
simpler factors can often be represented by graphical models whose vertices index the variables.
A factorization of the joint distribution according to the graph implies that the interactions
between variables can be factored into a sequence of “local interactions” between vertices that
lie within neighborhoods of each other.
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1. INTRODUCTION 5

Consider the case of an undirected graphical model. The factoring of interactions may be
stated in terms of either a Markov property, or a Gibbs property with respect to the graph.
Specifically, the local Markov property of such models states that the distribution of a variable
is only dependent directly on that of its neighbors in an appropriate neighborhood system. Of
course, two variables arbitrarily far apart can influence each other, but only through a sequence of
successive local interactions. The global Markov property for such models states that when two sets
of vertices are separated by a third, this induces a conditional independence on variables corre-
sponding to these sets of vertices, given those corresponding to the third set. On the other hand,
the Gibbs property of a distribution with respect to a graph asserts that the distribution factors
into a product of potential functions over the maximal cliques of the graph. Each potential cap-
tures the interaction between the set of variables that form the clique. The Hammersley-Clifford
theorem states that a positive distribution having the Markov property with respect to a graph
must have the Gibbs property with respect to the same graph.

The condition of positivity is essential in the Hammersley-Clifford theorem for undirected
graphs. However, it is not required when the distribution satisfies certain directed models. In
that case, the Markov property with respect to the directed graph implies that the distribution
factorizes into local conditional probability distributions (CPDs). Furthermore, if the model is a
directed acyclic graph (DAG), we can obtain the Gibbs property with respect to an undirected
graph constructed from the DAG by a process known as moralization. We will return to the
directed case shortly.

At this point we begin to see that factorization into conditionally independent pieces man-
ifests in terms of economical parametrizations of the joint distribution. Thus, the number of
independent parameters required to specify the joint distribution may be used as a measure of
the complexity of interactions between the covariates. When the variates are independent, this
measure takes its least value. Dependencies introduced at random (such as in random k-SAT)
cause it to rise. Roughly speaking, this measure is (O(ck), c > 1) where k is the largest interac-
tion between the variables that cannot be decomposed any further. Intuitively, we know that
constraint satisfaction problems (CSPs) are hard when we cannot separate their joint constraints
into smaller easily manageable pieces. This should be reflected then, in the growth of this mea-
sure on the distribution of all solutions to random CSPs as their constraint densities are increased.
Informally, a CSP is hard (but satisfiable) when the distribution of all its solutions is complex
to describe in terms of its number of independent parameters due to the extensive interactions
between the variables in the CSP. Graphical models offer us a way to measure the size of these
interactions.

Chapter 2 develops the principles underlying the framework of graphical models. We will
not use any of these models in particular, but construct another directed model on a larger
product space that utilizes these principles and tailors them to the case of least fixed point logic,
which we turn to next.

At this point, we change to the setting of finite model theory. Finite model theory is a branch
of mathematical logic that has provided machine independent characterizations of various im-
portant complexity classes including P, NP, and PSPACE. In particular, the class of polyno-
mial time computable queries on ordered structures has a precise description — it is the class of
queries expressible in the logic FO(LFP) which extends first order logic with the ability to com-
pute least fixed points of positive first order formulae. Least fixed point constructions iterate an
underlying positive first order formula, thereby building up a relation in stages. We take a geo-
metric picture of a LFP computation. Initially the relation to be built is empty. At the first stage,
certain elements, whose types satisfy the first order formula, enter the relation. This changes
the neighborhoods of these elements, and therefore in the next stage, other elements (whose
neighborhoods have been thus changed in the previous stages) become eligible for entering the
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1. INTRODUCTION 6

relation. The positivity of the formula implies that once an element is in the relation, it cannot
be removed, and so the iterations reach a fixed point in a polynomial number of steps. Impor-
tantly from our point of view, the positivity and the stage-wise nature of LFP means that the
computation has a directed representation on a graphical model that we will construct. Recall
at this stage that distributions over directed models enjoy factorization even when they are not
defined over the entire space of configurations.

We may interpret this as follows: LFP relies on the assumption that variables that are highly
entangled with each other due to constraints can be disentangled in a way that they now inter-
act with each other through conditional independencies induced by a certain directed graph-
ical model construction. Of course, an element does influence others arbitrarily far away, but
only through a sequence of such successive local and bounded interactions. The reason LFP compu-
tations terminate in polynomial time is analogous to the notions of conditional independence
that underlie efficient algorithms on graphical models having sufficient factorization into local
interactions.

In order to apply this picture in full generality to all LFP computations, we use the simulta-
neous induction lemma to push all simultaneous inductions into nested ones, and then employ
the transitivity theorem to encode nested fixed points as sections of a single relation of higher
arity. Finally, we either do the extra bookkeeping to work with relations of higher arity, or work
in a larger structure where the relation of higher arity is monadic (namely, structures of k-types
of the original structure). Either of these cases presents only a polynomially larger overhead,
and does not hamper our proof scheme. Building the machinery that can precisely map all these
cases to the picture of factorization into local interactions is the subject of Chapter 4.

The preceding insights now direct us to the setting necessary in order to separate P from
NP. We need a regime of NP-complete problems where interactions between variables are so
“dense” that they cannot be factored through the bottleneck of the local and bounded proper-
ties of first order logic that limit each stage of LFP computation. Intuitively, this should happen
when each variable has to simultaneously satisfy constraints involving an extensive (O(n)) frac-
tion of the variables in the problem.

In search of regimes where such situations arise, we turn to the study of ensemble random
k-SAT where the properties of the ensemble are studied as a function of the clause density
parameter. We will now add ideas from this field which lies on the intersection of statistical
mechanics and computer science to the set of ideas in the proof.

In the past two decades, the phase changes in the solution geometry of random k-SAT
ensembles as the clause density increases, have gathered much research attention. The 1RSB
ansatz of statistical mechanics says that the space of solutions of random k-SAT shatters into
exponentially many clusters of solutions when the clause density is sufficiently high. This phase
is called 1dRSB (1-Step Dynamic Replica Symmetry Breaking) and was conjectured by physi-
cists as part of the 1RSB ansatz. It has since been rigorously proved for high values of k. It
demonstrates the properties of high correlation between large sets of variables that we will
need. Specifically, the emergence of cores that are sets of C clauses all of whose variables lie in a
set of size C (this actually forces C to be O(n)). As the clause density is increased, the variables
in these cores “freeze.” Namely, they take the same value throughout the cluster. Changing the
value of a variable within a cluster necessitates changing O(n) other variables in order to arrive
at another satisfying solution, which would be in a different cluster. Furthermore, as the clause
density is increased towards the SAT-unSAT threshold, each cluster collapses steadily towards
a single solution, that is maximally far apart from every other cluster. Physicists think of this as
an “energy gap” between the clusters. Such stages are precisely the ones that cannot be factored
through local and bounded first order stages of a LFP computation due to the tight coupling be-
tween O(n) variables. Finally, as the clause density increases above the SAT-unSAT threshold,
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1. INTRODUCTION 7

the solution space vanishes, and the underlying instance of SAT is no longer satisfiable. We
reproduce the rigorously proved picture of the 1RSB ansatz that we will need in Chapter 5.

In Chapter 6, we make a brief excursion into the random graph theory of the factor graph
ensembles underlying random k-SAT. From here, we obtain results that asymptotically almost
surely upper bound the size of the largest cliques in the neighborhood systems on the Gaifman
graphs that we study later. These provide us with bounds on the largest irreducible interactions
between variables during the various stages of an LFP computation.

Finally in Chapter 7, we pull all the threads and machinery together. First, we encode k-SAT
instances as queries on structures over a certain vocabulary in a way that LFP captures all poly-
nomial time computable queries on them. We then set up the framework whereby we can
generate distributions of solutions to each instance by asking a purported LFP algorithm for
k-SAT to extend partial assignments on variables to full satisfying assignments.

Next, we embed the space of covariates into a larger product space which allows us to “dis-
entangle” the flow of information during a LFP computation. This allows us to study the
computations performed by the LFP with various initial values under a directed graphical
model. This model is only polynomially larger than the structure itself. We call this the Element-
Neighborhood-Stage Product, or ENSP model. The distribution of solutions generated by LFP then
is a mixture of distributions each of whom factors according to an ENSP.

At this point, we wish to measure the growth of independent parameters of distributions of
solutions whose embeddings into the larger product space factor over the ENSP. In order to do
so, we utilize the following properties.

1. The directed nature of the model that comes from properties of LFP.

2. The properties of neighborhoods that are obtained by studies on random graph ensem-
bles, specifically that neighborhoods that occur during the LFP computation are of size
poly(log n) asymptotically almost surely in the n→∞ limit.

3. The locality and boundedness properties of FO that put constraints upon each individual
stage of the LFP computation.

4. Simple properties of LFP, such as the closure ordinal being a polynomial in the structure
size.

The crucial property that allows us to analyze mixtures of distributions that factor accord-
ing to some ENSP is that we can parametrize the distribution using potentials on cliques of
its moralized graph that are of size at most poly(log n). This means that when the mixture is
exponentially numerous, we will see features that reflect the poly(log n) factor size of the condi-
tionally independent parametrization.

Now we close the loop and show that a distribution of solutions for SAT with these proper-
ties would contradict the known picture of k-SAT in the d1RSB phase for k > 8 — namely, the
presence of extensive frozen variables in exponentially many clusters with Hamming distance
between the clusters being O(n). In particular, in exponentially numerous mixtures, we would
have conditionally independent variation between blocks of poly(log n) variables, causing the
Hamming distance between solutions to be of this order as well. In other words, solutions for
k-SAT that are constructed using LFP will display aggregate behavior that reflects that they
are constructed out of “building blocks” of size poly(log n). This behavior will manifest when
exponentially many solutions are generated by the LFP construction.

This shows that LFP cannot express the satisfiability query in the d1RSB phase for high
enough k, and separates P from NP. This also explains the empirical observation that all
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1. INTRODUCTION 8

known polynomial time algorithms fail in the d1RSB phase for high values of k, and also es-
tablishes on rigorous principles the physics intuition about the onset of extensive long range
correlations in the d1RSB phase that causes all known polynomial time algorithms to fail.
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2. Interaction Models and
Conditional Independence

Systems involving a large number of variables interacting in complex ways are ubiquitous in
the mathematical sciences. These interactions induce dependencies between the variables. Be-
cause of the presence of such dependencies in a complex system with interacting variables, it
is not often that one encounters independence between variables. However, one frequently en-
counters conditional independence between sets of variables. Both independence and conditional
independence among sets of variables have been standard objects of study in probability and
statistics. Speaking in terms of algorithmic complexity, one often hopes that by exploiting the
conditional independence between certain sets of variables, one may avoid the cost of enumer-
ation of an exponential number of hypothesis in evaluating functions of the distribution that
are of interest.

2.1 Conditional Independence

We first fix some notation. Random variables will be denoted by upper case letters such as
X,Y, Z, etc. The values a random variable takes will be denoted by the corresponding lower
case letters, such as x, y, z. Throughout this work, we assume our random variables to be dis-
crete unless stated otherwise. We may also assume that they take values in a common finite
state space, which we usually denote by Λ following physics convention. We denote the proba-
bility mass functions of discrete random variables X,Y, Z by PX(x), PY (y), PZ(z) respectively.
Similarly, PX,Y (x, y) will denote the joint mass of (X,Y ), and so on. We drop subscripts on the
P when it causes no confusion. We freely use the term “distribution” for the probability mass
function.

The notion of conditional independence is central to our proof. The intuitive definition of
the conditional independence of X from Y given Z is that the conditional distribution of X
given (Y,Z) is equal to the conditional distribution of X given Z alone. This means that once
the value of Z is given, no further information about the value of X can be extracted from the
value of Y . This is an asymmetric definition, and can be replaced by the following symmetric
definition. Recall that X is independent of Y if

P (x, y) = P (x)P (y).

Definition 2.1. Let notation be as above. X is conditionally independent of Y given Z, written
X⊥⊥Y |Z, if

P (x, y | z) = P (x | z)P (y | z),

9



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 10

The asymmetric version which says that the information contained in Y is superfluous to
determining the value of X once the value of Z is known may be represented as

P (xcondy, z) = P (x | z).

The notion of conditional independence pervades statistical theory [Daw79, Daw80]. Sev-
eral notions from statistics may be recast in this language.

EXAMPLE 2.2. The notion of sufficiency may be seen as the presence of a certain conditional
independence [Daw79]. A sufficient statistic T in the problem of parameter estimation is that
which renders the estimate of the parameter independent of any further information from the
sample X . Thus, if Θ is the parameter to be estimated, then T is a sufficient statistic if

P (θ |x) = P (θ | t).

Thus, all there is to be gained from the sample in terms of information about Θ is already present
in T alone. In particular, if Θ is a posterior that is being computed by Bayesian inference, then
the above relation says that the posterior depends on the data X through the value of T alone.
Clearly, such a statement would lead to a reduction in the complexity of inference.

2.2 Conditional Independence in Undirected Graphical Mod-
els

Graphical models offer a convenient framework and methodology to describe and exploit con-
ditional independence between sets of variables in a system. One may think of the graphical
model as representing the family of distributions whose law fulfills the conditional indepen-
dence statements made by the graph. A member of this family may satisfy any number of ad-
ditional conditional independence statements, but not less than those prescribed by the graph.
In general, we will consider graphs G = (V,E) whose n vertices index a set of n random vari-
ables (X1, . . . , Xn). The random variables all take their values in a common state space Λ. The
random vector (X1, . . . , Xn) then takes values in a configuration space Ωn = Λn. We will denote
values of the random vector (X1, . . . , Xn) simply by x = (x1, . . . , xn). The notation XV \I will
denote the set of variables excluding those whose indices lie in the set I . Let P be a probability
measure on the configuration space. We will study the interplay between conditional indepen-
dence properties of P and its factorization properties.

There are, broadly, two kinds of graphical models: directed and undirected. We first con-
sider the case of undirected models. Fig. 2.1 illustrates an undirected graphical model with ten
variables.

Random Fields and Markov Properties

Graphical models are very useful because they allow us to read off conditional independencies
of the distributions that satisfy these models from the graph itself. Recall that we wish to study
the relation between conditional independence of a distribution with respect to a graphical
model, and its factorization. Towards that end, one may write increasingly stringent condi-
tional independence properties that a set of random variables satisfying a graphical model may
possess, with respect to the graph. In order to state these, we first define two graph theoretic
notions — those of a general neighborhood system, and of separation.

Definition 2.3. Given a set of variables S known as sites, a neighborhood system NS on S is a
collection of subsets {Ni : 1 ≤ i ≤ n} indexed by the sites in S that satisfy

10



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 11

A C B

Figure 2.1: An undirected graphical model. Each vertex represents a random variable. The
vertices in set A are separated from those in set B by set C. For random variables to satisfy
the global Markov property relative to this graphical model, the corresponding sets of random
variables must be conditionally independent. Namely, A⊥⊥B |C.

1. a site is not a neighbor to itself (this also means there are no self-loops in the induced
graph): si /∈ Ni, and

2. the relationship of being a neighbor is mutual: si ∈ Nj ⇔ sj ∈ Ni.

In many applications, the sites are vertices on a graph, and the neighborhood system Ni
is the set of neighbors of vertex si on the graph. We will often be interested in homogeneous
neighborhood systems of S on a graph in which, for each si ∈ S, the neighborhood Ni is defined
as

Gi := {sj ∈ S : d(si, sj) ≤ r}.

Namely, in such neighborhood systems, the neighborhood of a site is simply the set of sites that
lie in the radius r ball around that site. Note that a nearest neighbor system that is often used in
physics is just the case of r = 1. We will need to use the general case, where r will be determined
by considerations from logic that will be introduced in the next two chapters. We will use the
term “variable” freely in place of “site” when we move to logic.

Definition 2.4. Let A,B,C be three disjoint subsets of the vertices V of a graph G. The set C is
said to separate A and B if every path from a vertex in A to a vertex in B must pass through C.

Now we return to the case of the vertices indexing random variables (X1, . . . , Xn) and the
vector (X1, . . . , Xn) taking values in a configuration space Ωn. A probability measure P on
Ωn is said to satisfy certain Markov properties with respect to the graph when it satisfies the
appropriate conditional independencies with respect to that graph. We will study the following
two Markov properties, and their relation to factorization of the distribution.

Definition 2.5. 1. The local Markov property. The distribution Xi (for every i) is conditionally
independent of the rest of the graph given just the variables that lie in the neighborhood
of the vertex. In other words, the influence that variables exert on any given variable is
completely described by the influence that is exerted through the neighborhood variables
alone.

11
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2. The global Markov property. For any disjoint subsets A,B,C of V such that C separates A
from B in the graph, it holds that

A⊥⊥B |C.

We are interested in distributions that do satisfy such properties, and will examine what
effect these Markov properties have on the factorization of the distributions. For most applica-
tions, this is done in the context of Markov random fields.

We motivate a Markov random field with the simple example of a Markov chain {Xn : n ≥
0}. The Markov property of this chain is that any variable in the chain is conditionally indepen-
dent of all other variables in the chain given just its immediate neighbors:

Xn⊥⊥{xk : k /∈ {n− 1, n, n+ 1} |Xn−1, Xn+1}.

A Markov random field is the natural generalization of this picture to higher dimensions
and more general neighborhood systems.

Definition 2.6. The collection of random variables X1, . . . , Xn is a Markov random field with
respect to a neighborhood system on G if and only if the following two conditions are satisfied.

1. The distribution is positive on the space of configurations: P (x) > 0 for x ∈ Ωn.

2. The distribution at each vertex is conditionally independent of all other vertices given just
those in its neighborhood:

P (Xi |XV \i) = P (Xi |XNi
)

These local conditional distributions are known as local characteristics of the field.

The second condition says that Markov random fields satisfy the local Markov property
with respect to the neighborhood system. Thus, we can think of interactions between variables
in Markov random fields as being characterized by “piecewise local” interactions. Namely, the
influence of far away vertices must “factor through” local interactions. This may be interpreted
as:

The influence of far away variables is limited to that which is transmitted through the inter-
spersed intermediate variables — there is no “direct” influence of far away vertices beyond
that which is factored through such intermediate interactions.

However, through such local interactions, a vertex may influence any other arbitrarily far away.
Notice though, that this is a considerably simpler picture than having to consult the joint distri-
bution over all variables for all interactions, for here, we need only know the local joint distribu-
tions and use these to infer the correlations of far away variables. We shall see in later chapters
that this picture, with some additional caveats, is at the heart of polynomial time computations.

Note the positivity condition on Markov random fields. With this positivity condition, the
complete set of conditionals given by the local characteristics of a field determine the joint dis-
tribution [Bes74].

Markov random fields satisfy the global Markov property as well.

Theorem 2.7. Markov random fields with respect to a neighborhood system satisfy the global Markov
property with respect to the graph constructed from the neighborhood system.

Markov random fields originated in statistical mechanics [Dob68], where they model prob-
ability measures on configurations of interacting particles, such as Ising spins. See [KS80] for a
treatment that focusses on this setting. Their local properties were later found to have applica-
tions to analysis of images and other systems that can be modelled through some form of spatial
interaction. This field started with [Bes74] and came into its own with [GG84] which exploited
the Markov-Gibbs correspondence that we will deal with shortly. See also [Li09].

12
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2.2.1 Gibbs Random Fields and the Hammersley-Clifford Theorem

We are interested in how the Markov properties of the previous section translate into factoriza-
tion of the distribution. Note that Markov random fields are characterized by a local condition
— namely, their local conditional independence characteristics. We now describe another ran-
dom field that has a global characterization — the Gibbs random field.

Definition 2.8. A Gibbs random field (or Gibbs distribution) with respect to a neighborhood system
NG on the graph G is a probability measure on the set of configurations Ωn having a represen-
tation of the form

P (x1, . . . , xn) =
1

Z
exp(−U(x)

T
),

where

1. Z is the partition function and is a normalizing factor that ensures that the measure sums
to unity,

Z =
∑
x∈Ωn

exp(−U(x)

T
).

Evaluating Z explicitly is hard in general since it is a summation over each of the Λn

configurations in the space.

2. T is a constant known as the “Temperature” that has origins in statistical mechanics. It
controls the sharpness of the distribution. At high temperatures, the distribution tends to
be uniform over the configurations. At low temperatures, it tends towards a distribution
that is supported only on the lowest energy states.

3. U(x) is the “energy” of configuration x and takes the following form as a sum

U(x) =
∑
c∈C

Vc(x).

over the set of cliques C of G. The functions Vc : c ∈ C are the clique potentials such that the
value of Vc(x) depends only on the coordinates of x that lie in the clique c. These capture
the interactions between vertices in the clique.

Thus, a Gibbs random field has a probability distribution that factorizes into its constituent
“interaction potentials.” This says that the probability of a configuration depends only on the
interactions that occur between the variables, broken up into cliques. For example, let us say
that in a system, each particle interacts with only 2 other particles at a time, (if one prefers to
think in terms of statistical mechanics) then the energy of each state would be expressible as a
sum of potentials, each of whom had just three variables in its support. Thus, the Gibbs factor-
ization carries in it a faithful representation of the underlying interactions between the particles.
This type of factorization obviously yields a “simpler description” of the distribution. The pre-
cise notion is that of independent parameters it takes to specify the distribution. Factorization into
conditionally independent interactions of scope k means that we can specify the distribution in
O(γk) parameters rather than O(γn). We will return to this at the end of this chapter.

Definition 2.9. Let P be a Gibbs distribution whose energy function U(x) =
∑
c∈C Vc(x). The

support of the potential Vc is the cardinality of the clique c. The degree of the distribution P ,
denoted by deg(P ), is the maximum of the supports of the potentials. In other words, the
degree of the distribution is the size of the largest clique that occurs in its factorization.

13



2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 14

One may immediately see that the degree of a distribution is a measure of the complexity
of interactions in the system since it is the size of the largest set of variables whose interaction
cannot be split up in terms of smaller interactions between subsets. One would expect this to
be the hurdle in efficient algorithmic applications.

The Hammersley-Clifford theorem relates the two types of random fields.

Theorem 2.10 (Hammersley-Clifford). X is Markov random field with respect to a neighborhood
system NG on the graph G if and only if it is a Gibbs random field with respect to the same neighborhood
system.

The theorem appears in the unpublished manuscript [HC71] and uses a certain “blackening
algebra” in the proof. The first published proofs appear in [Bes74] and [Mou74].

Note that the condition of positivity on the distribution (which is part of the definition of a
Markov random field) is essential to state the theorem in full generality. The following example
from [Mou74] shows that relaxing this condition allows us to build distributions having the
Markov property, but not the Gibbs property.

EXAMPLE 2.11. Consider a system of four binary variables {X1, X2, X3, X4}. Each of the fol-
lowing combinations have probability 1/8, while the remaining combinations are disallowed.

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1).

We may check that this distribution has the global Markov property with respect to the 4 vertex
cycle graph. Namely we have

X1⊥⊥X3 |X2, X4 and X2⊥⊥X4 |X1, X3.

However, the distribution does not factorize into Gibbs potentials.

2.3 Factor Graphs

Factor graphs are bipartite graphs that express the decomposition of a “global” multivariate
function into “local” functions of subsets of the set of variables. They are a class of undirected
models. The two types of nodes in a factor graph correspond to variable nodes, and factor
nodes. See Fig. 2.2.
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Figure 2.2: A factor graph showing the three clause 3-SAT formula (X1 ∨X4 ∨ ¬X6) ∧ (¬X1 ∨
X2 ∨ ¬X3) ∧ (X4 ∨X5 ∨X6). A dashed line indicates that the variable appears negated in the
clause.
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2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 15

The distribution modelled by this factor graph will show a factorization as follows

p(x1, . . . , x6) =
1

Z
ϕ1(x1, x4, x6)ϕ2(x1, x2, x3)ϕ(x4, x5, x6), (2.1)

where Z =
∑

x1,...,x6

ϕ1(x1, x4, x6)ϕ2(x1, x2, x3)ϕ(x4, x5, x6). (2.2)

Factor graphs offer a finer grained view of factorization of a distribution than Bayesian net-
works or Markov networks. One should keep in mind that this factorization is (in general) far
from being a factorization into conditionals and does not express conditional independence.
The system must embed each of these factors in ways that are global and not obvious from the
factors. This global information is contained in the partition function. Thus, in general, these
factors do not represent conditionally independent pieces of the joint distributions. In sum-
mary, the factorization above is not the one what we are seeking — it does not imply a series of
conditional independencies in the joint distribution.

Factor graphs have been very useful in various applications, most notably perhaps in coding
theory where they are used as graphical models that underlie various decoding algorithms
based on forms of belief propagation (also known as the sum-product algorithm) that is an
exact algorithm for computing marginals on tree graphs but performs remarkably well even in
the presence of loops. See [KFaL98] and [AM00] for surveys of this field. As might be expected
from the preceding comments, these do not focus on conditional independence, but rather on
algorithmic applications of local features (such as locally tree like) of factor graphs.

A Hammersley-Clifford type theorem holds over the completion of a factor graph. A clique in
a factor graph is a set of variable nodes such that every pair in the set is connected by a function
node. The completion of a factor graph is obtained by introducing a new function node for each
clique, and connecting it to all the variable nodes in the clique, and no others. Then, a positive
distribution that satisfies the global Markov property with respect to a factor graph satisfies the
Gibbs property with respect to its completion.

2.4 The Markov-Gibbs Correspondence for Directed Models

Consider first a directed acyclic graph (DAG), which is simply a directed graph without any
directed cycles in it. Some specific points of additional terminology for directed graphs are as
follows. If there is a directed edge from x to y, we say that x is a parent of y, and y is the child
of x. The set of parents of x is denoted by pa(x), while the set of children of x is denoted by
ch(a). The set of vertices from whom directed paths lead to x is called the ancestor set of x and
is denoted an(x). Similarly, the set of vertices to whom directed paths from x lead is called the
descendant set of x and is denoted de(x). Note that DAGs is allowed to have loops (and loopy
DAGs are central to the study of iterative decoding algorithms on graphical models). Finally,
we often assume that the graph is equipped with a distance function d(·, ·) between vertices
which is just the length of the shortest path between them. A set of random variables whose
interdependencies may be represented using a DAG is known as a Bayesian network or a directed
Markov field. The idea is best illustrated with a simple example.

Consider the DAG of Fig. 2.3 (left). The corresponding factorization of the joint density that
is induced by the DAG model is

p(x1, . . . , x6) = p(x1)p(x2)p(x3)p(x4 |x1)p(x5 |x2, x3, x4).

Thus, every joint distribution that satisfies this DAG factorizes as above.
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2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 16

Given a directed graphical model, one may construct an undirected one by a process known
as moralization. In moralization, we (a) replace a directed edge from one vertex to another by
an undirected one between the same two vertices and (b) “marry” the parents of each vertex by
introducing edges between each pair of parents of the vertex at the head of the former directed
edge. The process is illustrated in the figure below.
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Figure 2.3: The moralization of the DAG on the left to obtain the moralized undirected graph
on the right.

In general, if we denote the set of parents of the variable xi by pa(xi), then the joint distri-
bution of (x1, . . . , xn) factorizes as

p(x1, . . . , xn) =

N∏
n=1

p(xn | pan).

We want, however, is to obtain a Markov-Gibbs equivalence for such graphical models in
the same manner that the Hammersley-Clifford theorem provided for positive Markov ran-
dom fields. We have seen that relaxing the positivity condition on the distribution in the
Hammersley-Clifford theorem (Thm. 2.10) cannot be done in general. In some cases how-
ever, one may remove the positivity condition safely. In particular, [LDLL90] extends the
Hammersley-Clifford correspondence to the case of arbitrary distributions (namely, dropping
the positivity requirement) for the case of directed Markov fields. In doing so, they simplify
and strengthen an earlier criterion for directed graphs given by [KSC84]. We will use the result
from [LDLL90], which we reproduce next.

Definition 2.12. A measure p admits a recursive factorization according to graph G if there exist
non-negative functions, known as kernels, kv(., .) for v ∈ V defined on Λ × Λ| pa(v)| where the
first factor is the state space for Xv and the second for Xpa(v), such that∫

kv(yv, xpa(v))µv(dyv) = 1

and
p = f.µ where f(x) =

∏
v∈V

kv(xv, xpa(v)).

In this case, the kernels kv(., xpa(v)) are the conditional densities for the distribution of Xv

conditioned on the value of its parents Xpa(v) = xpa(v). Now let Gm be the moral graph corre-
sponding to G.
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2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 17

Theorem 2.13. If p admits a recursive factorization according to G, then it admits a factorization (into
potentials) according to the moral graph Gm.

D-separation

We have considered the notion of separation on undirected models and its effect on the set of
conditional independencies satisfied by the distributions that factor according to the model. For
directed models, there is an analogous notion of separation known as D-separation. The notion
is what one would expect intuitively if one views directed models as representing “flows” of
probabilistic influence.

We simply state the property and refer the reader to [KF09, §3.3.1] and [Bis06, §8.2.2] for
discussion and examples. Let A,B, and C be sets of vertices on a directed model. Consider the
set of all directed paths coming from a node in A and going to a node in B. Such a path is said
to be blocked if one of the following two scenarios occurs.

1. Arrows on the path meet head-to-tail or tail-to-tail at a node in C.

2. Arrows meet head-to-head at a node, and neither the node nor any of its descendants is
in C.

If all paths from A to B are blocked as above, then C is said to D-separate A from B, and the
joint distribution must satisfy A⊥⊥B |C.

2.5 I-maps and D-maps

We have seen that there are two broad classes of graphical models — undirected and directed
— which may be used to represent the interaction of variables in a system. The conditional
independence properties of these two classes are obtained differently.

Definition 2.14. A graph (directed or undirected) is said to be a D-map (’dependencies map’)
for a distribution if every conditional independence statement of the form A⊥⊥B |C for sets
of variables A, B, and C that is satisfied by the distribution is reflected in the graph. Thus, a
completely disconnected graph having no edges is trivially a D-map for any distribution.

A D-map may express more conditional independencies than the distribution possesses.

Definition 2.15. A graph (directed or undirected) is said to be a I-map (’independencies map’)
for a distribution if every conditional independence statement of the form A⊥⊥B |C for sets of
variables A, B, and C that is expressed by the graph is also satisfied by the distribution. Thus,
a completely connected graph is trivially a I-map for any distribution.

A I-map may express less conditional independencies than the distribution possesses.

Definition 2.16. A graph that is both an I-map and a D-map for a distribution is called its
P-map (’perfect man’).

In other words a P-map expresses precisely the set of conditional independencies that are
present in the distribution.

Not all distributions have P-maps. Indeed, the class of distributions having directed P-
maps is itself distinct from the class having undirected P-maps and neither equals the class of
all distributions (see [Bis06, §3.8.4] for examples).
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2.6 Parametrization

We now come to a central theme in our work. Consider a system of n binary covariates (X1, . . . , Xn).
To specify their joint distribution p(x1, . . . , xn) completely in the absence of any additional in-
formation, we would have to give the probability mass function at each of the 2n configurations
that these n variables can take jointly. The only constraint we have on these probability masses
is that they must sum up to 1. Thus, if we had the function value at 2n − 1 configurations, we
could find that at the remaining configuration. This means that in the absence of any additional
information, n covariates require 2n − 1 parameters to specify their joint distribution.

Compare this to the case where we are provided with one critical piece of extra information
— that the n variates are independent of each other. In that case, we would need 1 parameter to
specify each of their individual distributions — namely, the probability that it takes the value 1.
These n parameters then specify the joint distribution simply because the distribution factorizes
completely into factors whose scopes are single variables (namely, just the p(xi)), as a result of
the independence. Thus, we go from exponentially many independent parameters to linearly
many if we know that the variates are independent.

As noted earlier, it is not often that complex systems of n interacting variables have complete
independence between some subsets. What is far more frequent is that there are conditional in-
dependencies between certain subsets given some intermediate subset. In this case, the joint will
factorize into factors each of whose scope is a subset of (X1, . . . , Xn). If the factorization is
into conditionally independent factors, each of whose scope is of size at most k , then we can
parametrize the joint distribution with at most n2n independent parameters. We should em-
phasize that the factors must give us conditional independence for this to be true. For example,
factor graphs give us a factorization, but it is, in general, not a factorization into conditional in-
dependents, and so we cannot conclude anything about the number of independent parameters
by just examining the factor graph. From our perspective, a major feature of directed graphical
models is that their factorizations are already globally normalized once they are locally normal-
ized, meaning that there is a recursive factorization of the joint into conditionally independent
pieces. The conditional independence in this case is from all non-descendants, given the par-
ents. Therefore, if each node has at most k parents, we can parametrize the distribution using at
most n2k independent parameters. We may also moralize the graph and see this as a factoriza-
tion over cliques in the moralized graph. Note that such a factorization (namely, starting from
a directed model and moralizing) holds even if the distribution is not positive in contrast with
those distributions which do not factor over directed models and where we have to invoke the
Hammersley-Clifford theorem to get a similar factorization. See [KF09] for further discussion
on parameterizations for directed and undirected graphical models.

Our proof scheme aims to distinguish distributions based on the size of the irreducible direct
interactions between subsets of the covariates. Namely, we would like to distinguish distribu-
tions where there are O(n) such covariates whose joint interaction cannot be factored through
smaller interactions (having less than O(n) covariates) chained together by conditional inde-
pendencies. We would like to contrast such distributions from others which can be so factored
through factors having only poly(log n) variates in their scope. The measure that we have which
allows us to make this distinction is the number of independent parameters it takes to specify
the distribution. When the size of the smallest irreducible interactions is O(n), then we need
O(cn) parameters where c > 1. On the other hand, if we were able to demonstrate that the
distribution factors through interactions which always have scope poly(log n), then we would
need only O(cpoly(logn)) parameters.

Let us consider the example of a Markov random field. By Hammersley-Clifford, it is also
a Gibbs random field over the set of maximal cliques in the graph encoding the neighborhood
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2. INTERACTION MODELS AND CONDITIONAL INDEPENDENCE 19

system of the Markov random field. This Gibbs field comes with conditional independence as-
surance, and therefore, we have an upper bound on the number of parameters it takes to specify
the distribution. Namely, it is just

∑
c∈C 2|c|. Thus, if at most k < n variables interact directly

at a time, then the largest clique size would be k, and this would give us a more economical
parameterization than the one which requires 2n − 1 parameters.

In this work, we will build machinery that shows that if a problem lies in P, the factorization
of the distribution of solutions to that problem causes it to have economical parametrization,
precisely because variables do not interact all at once, but rather in smaller subsets in a directed
manner that gives us conditional independencies between sets that are of size poly(log n).

We now begin the process of building that machinery.
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3. Logical Descriptions of
Computations

Work in finite model theory and descriptive complexity theory — a branch of finite model the-
ory that studies the expressive power of various logics in terms of complexity classes — has
resulted in machine independent characterizations of various complexity classes. In particular,
over ordered structures, there is a precise and highly insightful characterization of the class of
queries that are computable in polynomial time, and those that are computable in polynomial
space. In order to keep the treatment relatively complete, we begin with a brief précis of this
theory. Readers from a finite model theory background may skip this chapter.

We quickly set notation. A vocabulary, denoted by σ, is a set consisting of finitely many
relation and constant symbols,

σ = 〈R1, . . . , Rm, c1, . . . , cs〉.

Each relation has a fixed arity. We consider only relational vocabularies in that there are no
function symbols. This poses no shortcomings since functions may be encoded as relations. A
σ-structure A consists of a set A which is the universe of A, interpretations RA for each of the
relation symbols in the vocabulary, and interpretations cA for each of the constant symbols in
the vocabulary. Namely,

A = 〈A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s 〉.

An example is the vocabulary of graphs which consists of a single relation symbol having
arity two. Then, a graph may be seen as a structure over this vocabulary, where the universe is
the set of nodes, and the relation symbol is interpreted as an edge. In addition, some applica-
tions may require us to work with a graph vocabulary having two constants interpreted in the
structure as source and sink nodes respectively.

We also denote by σn the extension of σ by n additional constants, and denote by (A,a) the
structure where the tuple a has been identified with these additional constants.

3.1 Inductive Definitions and Fixed Points

The material in this section is standard, and we refer the reader to [Mos74] for the first mono-
graph on the subject, and to [EF06, Lib04] for detailed treatments in the context of finite model
theory. See [Imm99] for a text on descriptive complexity theory. Our treatment is taken mostly
from these sources, and stresses the facts we need.

Inductive definitions are a fundamental primitive of mathematics. The idea is to build up a
set in stages, where the defining relation for each stage can be written in the first order language
of the underlying structure and uses elements added to the set in previous stages. In the most
general case, there is an underlying structure A = 〈A,R1, . . . , Rm〉 and a formula

φ(S,x) ≡ φ(S, x1, . . . , xn)
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3. LOGICAL DESCRIPTIONS OF COMPUTATIONS 21

in the first-order language of A. The variable S is a second-order relation variable that will
eventually hold the set we are trying to build up in stages. At the ξth stage of the induction,
denoted by Iξφ, we insert into the relation S the tuples according to

x ∈ Iξφ ⇔ φ(
⋃
η<ξ

Iηφ , x).

We will denote the stage that a tuple enters the relation in the induction defined by φ by | · |Aφ .
The decomposition into its various stages is a central characteristic of inductively defined rela-
tions. We will also require that φ have only positive occurrences of the n-ary relation variable
S, namely all occurrences of S be within the scope of an even number of negations. Such in-
ductions are called positive elementary. In the most general case, a transfinite induction may
result. The least ordinal κ at which Iκφ = Iκ+1

φ is called the closure ordinal of the induction, and
is denoted by |φA|. When the underlying structures are finite, this is also known as the inductive
depth. Note that the cardinality of the ordinal κ is at most |A|n.

Finally, we define the relation
Iφ =

⋃
ξ

Iξφ.

Sets of the form Iφ are known as fixed points of the structure. Relations that may be defined by

R(x)⇔ Iφ(a,x)

for some choice of tuple a over A are known as inductive relations. Thus, inductive relations are
sections of fixed points.

Note that there are definitions of the set Iφ that are equivalent, but can be stated only in the
second order language of A. Note that the definition above is

1. elementary at each stage, and

2. constructive.

We will use both these properties throughout our work.
We now proceed more formally by introducing operators and their fixed points, and then

consider the operators on structures that are induced by first order formulae. We begin by
defining two classes of operators on sets.

Definition 3.1. LetA be a finite set, and P(A) be its power set. An operator F onA is a function
F : P(A) → P(A). The operator F is monotone if it respects subset inclusion, namely, for all
subsets X,Y of A, if X ⊆ Y , then F (X) ⊆ F (Y ). The operator F is inflationary if it maps sets to
their supersets, namely, X ⊆ F (X).

Next, we define sequences induced by operators, and characterize the sequences induced
by monotone and inflationary operators.

Definition 3.2. Let F be an operator on A. Consider the sequence of sets F 0, F 1, . . . defined by

F 0 = ∅,
F i+1 = F (F i).

(3.1)

This sequence (F i) is called inductive if it is increasing, namely, if F i ⊆ F i+1 for all i. In this
case, we define

F∞ :=

∞⋃
i=0

F i. (3.2)

21



3. LOGICAL DESCRIPTIONS OF COMPUTATIONS 22

Lemma 3.3. If F is either monotone or inflationary, the sequence (F i) is inductive.

Now we are ready to define fixed points of operators on sets.

Definition 3.4. Let F be an operator onA. The setX ⊆ A is called a fixed point of F if F (X) = X .
A fixed pointX of F is called its least fixed point, denoted LFP(F ), if it is contained in every other
fixed point Y of F , namely, X ⊆ Y whenever Y is a fixed point of F .

Not all operators have fixed points, let alone least fixed points. The Tarski-Knaster guaran-
tees that monotone operators do, and also provides two constructions of the least fixed point
for such operators: one “from above” and the other “from below.” The latter construction uses
the sequences (3.1).

Theorem 3.5 (Tarski-Knaster). Let F be a monotone operator on a set A.

1. F has a least fixed point LFP(F ) which is the intersection of all the fixed points of F . Namely,

LFP(F ) =
⋂
{Y : Y = F (Y )}.

2. LFP(F ) is also equal to the union of the stages of the sequence (F i) defined in (3.1). Namely,

LFP(F ) =
⋃
F i = F∞.

However, not all operators are monotone; therefore we need a means of constructing fixed
points for non-monotone operators.

Definition 3.6. For an inflationary operator F , the sequence F i is inductive, and hence eventu-
ally stabilizes to the fixed point F∞. For an arbitrary operator G, we associate the inflationary
operator Ginfl defined by Ginfl(Y ) , Y ∪G(Y ). The set Ginfl

∞ is called the inflationary fixed point
of G, and denoted by IFP(G).

Definition 3.7. Consider the sequence (F i) induced by an arbitrary operator F on A. The
sequence may or may not stabilize. In the first case, there is a positive integer n such that
Fn+1 = Fn, and therefore for all m > n, Fm = Fn. In the latter case, the sequence F i does
not stabilize, namely, for all n ≤ 2|A|, Fn 6= Fn+1. Now, we define the partial fixed point of F ,
denoted PFP(F ), as Fn in the first case, and the empty set in the second case.

3.2 Fixed Point Logics for P and PSPACE

We now specialize the theory of fixed points of operators to the case where the operators are
defined by means of first order formulae.

Definition 3.8. Let σ be a relational vocabulary, and R a relational symbol of arity k that is
not in σ. Let ϕ(R, x1, . . . , xn) = ϕ(R,x) be a formula of vocabulary σ ∪ {R}. Now consider a
structure A of vocabulary σ. The formula ϕ(R,x) defines an operator Fϕ : P(Ak) → P(Ak) on
Ak which acts on a subset X ⊆ Ak as

Fϕ(X) = {a |A |= ϕ(X/R, a}, (3.3)

where ϕ(X/R, a}means that R is interpreted as X in ϕ.
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We wish to extend FO by adding fixed points of operators of the form Fφ, where φ is a for-
mula in FO. This gives us fixed point logics which play a central role in descriptive complexity
theory.

Definition 3.9. Let the notation be as above.

1. The logic FO(IFP) is obtained by extending FO with the following formation rule: if
ϕ(R,x) is a formula and t a k-tuple of terms, then [IFPR,xϕ(R,x)](t) is a formula whose
free variables are those of t. The semantics are given by

A |= [IFPR,xϕ(R,x)](a) iff a ∈ IFP(Fϕ).

2. The logic FO(PFP) is obtained by extending FO with the following formation rule: if
ϕ(R,x) is a formula and t a k-tuple of terms, then [PFPR,xϕ(R,x)](t) is a formula whose
free variables are those of t. The semantics are given by

A |= [PFPR,xϕ(R,x)](a) iff a ∈ PFP(Fϕ).

We cannot define the closure of FO under taking least fixed points in the above manner
without further restrictions since least fixed points are guaranteed to exist only for monotone
operators, and testing for monotonicity is undecidable. If we were to form a logic by extending
FO by least fixed points without further restrictions, we would obtain a logic with an unde-
cidable syntax. Hence, we make some restrictions on the formulae which guarantee that the
operators obtained from them as described by (3.3) will be monotone, and thus will have a least
fixed point. We need a definition.

Definition 3.10. Let notation be as earlier. Let ϕ be a formula containing a relational symbol R.
An occurrence of R is said to be positive if it is under the scope of an even number of negations,
and negative if it is under the scope of an odd number of negations. A formula is said to be
positive in R if all occurrences of R in it are positive, or there are no occurrences of R at all. In
particular, there are no negative occurrences of R in the formula.

Lemma 3.11. Let notation be as earlier. If the formula ϕ(R,x) is positive in R, then the operator
obtained from ϕ by construction (3.3) is monotone.

Now we can define the closure of FO under least fixed points of operators obtained from
formulae that are positive in a relational variable.

Definition 3.12. The logic FO(LFP) is obtained by extending FO with the following formation
rule: if ϕ(R,x) is a formula that is positive in the k-ary relational variable R, and t is a k-tuple
of terms, then [LFPR,xϕ(R,x)](t) is a formula whose free variables are those of t. The semantics
are given by

A |= [LFPR,xϕ(R,x)](a) iff a ∈ LFP(Fϕ).

As earlier, the stage at which the tuple a enters the relation R is denoted by |a|Aϕ , and induc-
tive depths are denoted by |ϕA|. This is well defined for least fixed points since a tuple enters
a relation only once, and is never removed from it after. In fixed points (such as partial fixed
points) where the underlying formula is not necessarily positive, this is not true. A tuple may
enter and leave the relation being built multiple times.
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Next, we informally state two well-known results on the expressive power of fixed point
logics. First, adding the ability to do simultaneous induction over several formulae does not in-
crease the expressive power of the logic, and secondly FO(IFP) = FO(LFP) over finite structures.
See [Lib04, §10.3, p. 184] for details.

We have introduced various fixed point constructions and extensions of first order logic by
these constructions. We end this section by relating these logics to various complexity classes.
These are the central results of descriptive complexity theory.

Fagin [Fag74] obtained the first machine independent logical characterization of an impor-
tant complexity class. Here, ∃SO refers to the restriction of second-order logic to formulae of
the form

∃X1 · · · ∃Xmϕ,

where ϕ does not have any second-order quantification.

Theorem 3.13 (Fagin).
∃SO = NP.

Immerman [Imm82] and Vardi [Var82] obtained the following central result that captures
the class P on ordered structures.

Theorem 3.14 (Immerman-Vardi). Over finite, ordered structures, the queries expressible in the logic
FO(LFP) are precisely those that can be computed in polynomial time. Namely,

FO(LFP) = P.

A characterization of PSPACE in terms of PFP was obtained in [AV91, Var82].

Theorem 3.15 (Abiteboul-Vianu, Vardi). Over finite, ordered structures, the queries expressible in
the logic FO(PFP) are precisely those that can be computed in polynomial space. Namely,

FO(PFP) = PSPACE.

Note: We will often use the term LFP generically instead of FO(LFP) when we wish to empha-
size the fixed point construction being performed, rather than the language.
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4. The Link Between Polynomial
Time Computation and Conditional
Independence

In Chapter 2 we saw how certain joint distributions that encode interactions between collections
of variables “factor through” smaller, simpler interactions. This necessarily affects the type
of influence a variable may exert on other variables in the system. Thus, while a variable in
such a system can exert its influence throughout the system, this influence must necessarily
be bottlenecked by the simpler interactions that it must factor through. In other words, the
influence must propagate with bottlenecks at each stage. In the case where there are conditional
independencies, the influence can only be “transmitted through” the values of the intermediate
conditioning variables.

In this chapter, we will uncover a similar phenomenon underlying the logical description
of polynomial time computation on ordered structures. The fundamental observation is the
following:

Least fixed point computations “factor through” first order computations, and so limitations
of first order logic must be the source of the bottleneck at each stage to the propagation of
information in such computations.

The treatment of LFP versus FO in finite model theory centers around the fact that FO can
only express local properties, while LFP allows non-local properties such as transitive closure
to be expressed. We are taking as given the non-local capability of LFP, and asking how this non-local
nature factors at each step, and what is the effect of such a factorization on the joint distribution of LFP
acting upon ensembles.

Fixed point logics allow variables to be non-local in their influence, but this non-local in-
fluence must factor through first order logic at each stage. This is a very similar underlying
idea to the statistical mechanical picture of random fields over spaces of configurations that we
saw in Chapter 2, but comes cloaked in a very different garb — that of logic and operators.
The sequence (F iϕ) of operators that construct fixed points may be seen as the propagation of
influence in a structure by means of setting values of “intermediate variables”. In this case,
the variables are set by inducting them into a relation at various stages of the induction. We
want to understand the stage-wise bottleneck that a fixed point computation faces at each step
of its execution, and tie this back to notions of conditional independence and factorization of
distributions. In order to accomplish this, we must understand the limitations of each stage of
a LFP computation and understand how this affects the propagation of long-range influence in
relations computed by LFP. Namely, we will bring to bear ideas from statistical mechanics and
message passing to the logical description of computations.

It will be beneficial to state this intuition with the example of transitive closure.
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EXAMPLE 4.1. The transitive closure of an edge in a graph is the standard example of a non-local
property that cannot be expressed by first order logic. It can be expressed in FO(LFP) as follows.
Let E be a binary relation that expresses the presence of an edge between its arguments. Then
we can see that iterating the positive first order formula ϕ(R, x, y) given by

ϕ(R, x, y) ≡ E(x, y) ∨ ∃z(E(x, z) ∧R(z, y)).

builds the transitive closure relation in stages.
Notice that the decision of whether a vertex enters the relation is based on the immediate

neighborhood of the vertex. In other words, the relation is built stage by stage, and at each
stage, vertices that have entered a relation make other vertices that are adjacent to them eligible
to enter the relation at the next stage. Thus, though the resulting property is non-local, the informa-
tion flow used to compute it is stage-wise local. The computation factors through a local property at
each stage, but by chaining many such local factors together, we obtain the non-local relation of
transitive closure. This picture relates to a Markov random field, where such local interactions
are chained together in a way that variables can exert their influence to arbitrary lengths, but
the factorization of that influence (encoded in the joint distribution) reveals the stage-wise local
nature of the interaction. There are important differences however — the flow of LFP computa-
tion is directed, whereas a Markov random field is undirected, for instance. We have used this
simple example just to provide some preliminary intuition. We will now proceed to build the
requisite framework.

4.1 The Limitations of LFP

Many of the techniques in model theory break down when restricted to finite models. A no-
table exception is the Ehrenfeucht-Fraı̈ssé game for first order logic. This has led to much re-
search attention to game theoretic characterizations of various logics. The primary technique
for demonstrating the limitations of fixed point logics in expressing properties is to consider
them a segment of the logic Lk∞ω , which extends first order logic with infinitary connectives,
and then use the characterization of expressibility in this logic in terms of k-pebble games. This
is however not useful for our purpose (namely, separating P from NP) since NP ⊆ PSPACE
and the latter class is captured by PFP, which is also a segment of Lk∞ω .

One of the central contributions of our work is demonstrating a completely different view-
point of LFP computations in terms of the concepts of conditional independence and factoring
of distributions, both of which are fundamental to statistics and probability theory. In order to
arrive at this correspondence, we will need to understand the limitations of first order logic.
Least fixed point is an iteration of first order formulas. The limitations of first order formulae
mentioned in the previous section therefore appear at each step of a least fixed point computa-
tion.

Viewing LFP as “stage-wise first order” is central to our analysis. Let us pause for a while
and see how this fits into our global framework. We are interested in factoring complex inter-
actions between variables into their smallest constituent irreducible factors. Viewed this way,
LFP has a natural factorization into its stages, which are all described by first order formulae.

Let us now analyze the limitations of the LFP computation through this viewpoint.

4.1.1 Locality of First Order Logic

The local properties of first order logic have received considerable research attention and expo-
sitions can be found in standard references such as [Lib04, Ch. 4], [EF06, Ch. 2], [Imm99, Ch.
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6]. The basic idea is that first order formulae can only “see” up to a certain distance away from
their free variables. This distance is determined by the quantifier rank of the formula.

The idea that first order formulae are local has been formalized in essentially two different
ways. This has led to two major notions of locality — Hanf locality [Han65] and Gaifman local-
ity [Gai82]. Informally, Hanf locality says that whether or not a first order formula ϕ holds in
a structure depends only on its multiset of isomorphism types of spheres of radius r. Gaifman
locality says that whether or not ϕ holds in a structure depends on the number of elements of
that structure having pairwise disjoint r-neighborhoods that fulfill first order formulae of quan-
tifier depth d for some fixed d (which depends on ϕ). Clearly, both notions express properties
of combinations of neighborhoods of fixed size.

In the literature of finite model theory, these properties were developed to deal with cases
where the neighborhoods of the elements in the structure had bounded diameters. In particular,
some of the most striking applications of such properties are in graphs with bounded degree,
such as the linear time algorithm to evaluate first order properties on bounded degree graphs
[See96]. In contrast, we will use some of the normal forms developed in the context of locality
properties in finite model theory, but in the scenario where neighborhoods of elements have
unbounded diameter. Thus, it is not only the locality that is of interest to us, but the exact
specification of the finitary nature of the first order computation. We will see that what we need
is that first order logic can only exploit a bounded number of local properties. We will need both
these properties in our analysis.

Recall the notation and definitions from the previous chapter. We need some definitions in
order to state the results.

Definition 4.2. The Gaifman graph of a σ-structure A is denoted by GA and defined as follows.
The set of nodes of GA is A. There is an edge between two nodes a1 and a2 in GA if there is a
relation R in σ and a tuple t ∈ RA such that both a1 and a2 appear in t.

With the graph defined, we have a notion of distance between elements ai, aj of A, denoted
by d(ai, aj), as simply the length of the shortest path between ai and aj inGA. We extend this to
a notion of distance between tuples fromA as follows. Let a = (a1, . . . , an) and b = (b1, . . . , bm).
Then

dA(a,b) = min{dA(ai, bj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

There is no restriction on n and m above. In particular, the definition above also applies to
the case where either of them is equal to one. Namely, we have the notion of distance between
a tuple and a singleton element. We are now ready to define neighborhoods of tuples. Recall
that σn is the expansion of σ by n additional constants.

Definition 4.3. Let A be a σ-structure and let a be a tuple over A. The ball of radius r around a
is a set defined by

BA
r (a) = {b ∈ A : dA(a, b) ≤ r}.

The r-neighborhood of a in A is the σn-structure NA
r (a) whose universe is BA

r (a); each relation
R is interpreted as RA restricted to BA

r (a); and the n additional constants are interpreted as
a1, . . . , an.

We recall the notion of a type. Informally, if L is a logic (or language), the L-type of a tuple
is the sum total of the information that can be expressed about it in the language L. Thus, the
first order type of a m-tuple in a structure is defined as the set of all FO formulae having m free
variables that are satisfied by the tuple. Over finite structures, this notion is far too powerful
since it characterizes the structure (A,a) up to isomorphism. A more useful notion is the local
type of a tuple. In particular, a neighborhood is a σn-structure, and a type of a neighborhood is an
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equivalence class of such structures up to isomorphism. Note that any isomorphism between
NA
r (a1, . . . , an) and NB

r (b1, . . . , bn) must send ai to bi for 1 ≤ i ≤ n.

Definition 4.4. Notation as above. The local r-type of a tuple a in A is the type of a in the
substructure induced by the r-neighborhood of a in A, namely in Nr(a).

In what follows, we may drop the superscript if the underlying structure is clear. The fol-
lowing three notions of locality are used in stating the results.

Definition 4.5. 1. Formulas whose truth at a tuple a depends only onBr(a) are called r-local.
In other words, quantification in such formulas is restricted to the structure Nr(x).

2. Formulas that are r-local around their variables for some value of r are said to be local.

3. Boolean combinations of formulas that are local around the various coordinates xi of x
are said to be basic local.

As mentioned earlier, there are two broad flavors of locality results in literature – those that
follow from Hanf’s theorem, and those that follow from Gaifman’s theorem. The first relates
two different structures.

Theorem 4.6 ([Han65]). Let A,B be σ-structures and let m ∈ N . Suppose that for some e ∈ N,
the 3m-balls in A and B have less than e elements, and for each 3m-neighborhood type τ , either of the
following holds.

1. Both A and B have the same number of elements of type τ .

2. Both A and B have more than me elements of type τ .

Then A and B satisfy the same first order formulae up to quantifier rank m, written A ≡m B.

Note that in clause 1 above, the number of elements may be zero. In other words, the same
set of types may be absent in both structures.

The Hanf locality lemma for formulae having a single free variable has a simple form and is
an easy consequence of Thm. 4.6.

Lemma 4.7. Notation as above. Let ϕ(x) be a formula of quantifier depth q. Then there is a radius r and
threshold t such that if A and B have the same multiset of local types up to threshold t, and the elements
a ∈ A and b ∈ B have the same local type up to radius r, then

A |= ϕ(a)↔ B |= ϕ(b).

See [Lin05] for an application to computing simple monadic fixed points on structures of
bounded degree in linear time.

Next we come to Gaifman’s version of locality.

Theorem 4.8 ([Gai82]). Every FO formula ϕ(x) over a relational vocabulary is equivalent to a Boolean
combination of

1. local formula around x, and

2. sentences of the form

∃x1, . . . , xs

 s∧
i=1

φ(xi) ∧
∧

1≤i≤j≤s

d>2r(xi, xj)

 ,

where the φ are r-local.
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In words, for every first order formula, there is an r such that the truth of the formula on a
structure depends only on the number of elements having disjoint r-neighborhoods that satisfy
certain local formulas. This again expresses the bounded number of local properties feature that
limits first order logic.

The following normal form for first order logic that was developed in an attempt to merge
some of the ideas from Hanf and Gaifman locality.

Theorem 4.9 ([SB99]). Every first-order sentence is logically equivalent to one of the form

∃x1 · · · ∃xl∀yϕ(x, y),

where ϕ is local around y.

4.2 Simple Monadic LFP and Conditional Independence

In this section, we exploit the limitations described in the previous section to build concep-
tual bridges from least fixed point logic to the Markov-Gibbs picture of the preceding section.
At first, this may seem to be an unlikely union. But we will establish that there are funda-
mental conceptual relationships between the directed Markovian picture and least fixed point
computations. The key is to see the constructions underlying least fixed point computations
through the lens of influence propagation and conditional independence. In this section, we
will demonstrate this relationship for the case of simple monadic least fixed points. Namely, a
FO(LFP) formula without any nesting or simultaneous induction, and where the LFP relation
being constructed is monadic. In later sections, we show how to deal with complex fixed points
as well.

We wish to build a view of fixed point computation as an information propagation algo-
rithm. In order to do so, let us examine the geometry of information flow during an LFP com-
putation. At stage zero of the fixed point computation, none of the elements of the structure
are in the relation being computed. At the first stage, some subset of elements enters the rela-
tion. This changes the local neighborhoods of these elements, and the vertices that lie in these
local neighborhoods change their local type. Due to the global changes in the multiset of local
types, more elements in the structure become eligible for inclusion into the relation at the next
stage. This process continues, and the changes “propagate” through the structure. Thus, the
fundamental vehicle of this information propagation is that a fixed point computation ϕ(R, x) changes
local neighborhoods of elements at each stage of the computation.

This propagation is

1. directed, and

2. relies on a bounded number of local neighborhoods at each stage.

In other words, we observe that

The influence of an element during LFP computation propagates in a similar manner to the
influence of a random variable in a directed Markov field.

This correspondence is important to us. Let us try to uncover the underlying principles
that cause it. The directed property comes from the positivity of the first order formula that
is being iterated. This ensures that once an element is inserted into the relation that is being
computed, it is never removed. Thus, influence flows in the direction of the stages of the LFP
computation. Furthermore, this influence flow is local in the following sense: the influence of
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an element can propagate throughout the structure, but only through its influence on various
local neighborhoods.

This correspondence is most striking in the case of bounded degree structures. In that case,
we have only O(1) local types.

Lemma 4.10. On a graph of bounded degree, there is a fixed number of non-isomorphic neighborhoods
with radius r. Consequently, there are only a fixed number of local r-types.

In order to determine whether an element in a structure satisfies a first order formula we
need (a) the multiset of local r-types in the structure (also known as its global type) for some
value of r, and (b) the local type of the element. Furthermore, by threshold Hanf, we only need
to know the multiset of local types up to a certain threshold.

For large enough structures, we will cross the Hanf threshold for the multiset of r-types. At
this point, we will be making a decision of whether an element enters the relation based solely
on its local r-type. This type potentially changes with each stage of the LFP. At the time when
this change renders the element eligible for entering the relation, it will do so. Once it enters the
relation, it changes the local r-type of all those elements which lie within a r-neighborhood of
it, and such changes render them eligible, and so on. This is how the computation proceeds, in
a purely stage-wise local manner. This is a Markov property: the influence of an element upon
another must factor entirely through the local neighborhood of the latter.

In the more general case where degrees are not bounded, we still have factoring through
local neighborhoods, except that we have to consider all the local neighborhoods in the struc-
ture. However, here the bounded nature of FO comes in. The FO formula that is being iterated
can only express a property about some bounded number of such local neighborhoods. For ex-
ample, in the Gaifman form, there are s distinguished disjoint neighborhoods that must satisfy
some local condition.

Remark 4.11. The same concept can be expressed in the language of sufficient statistics. Namely,
knowing some information about certain local neighborhoods renders the rest of the informa-
tion about variable values that have entered the relation in previous stages of the graph su-
perfluous. In particular, Gaifman’s theorem says that for first order properties, there exists a
sufficient statistic that is gathered locally at a bounded number of elements. Knowing this statistic
gives us conditional independence from the values of other elements that have already entered
the relation previously, but not from elements that will enter the relation subsequently. This is
similar to the directed Markov picture where there is conditional independence of any variable
from non-descendants given the value of the parents.

At this point, we have exhibited a correspondence between two apparently very different
formalisms. This correspondence is illustrated in Fig. 4.1.
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Figure 4.1: The LFP computation process viewed as conditional independencies.
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4.3 Conditional Independence in Complex Fixed Points

In the previous sections, we showed that the natural “factorization” of LFP into first order logic,
coupled with the bounded local property of first order logic can be used to exhibit conditional
independencies in the relation being computed.

But the argument we provided was for simple fixed points having one free variable, namely,
for monadic least fixed points. How can we show that this picture is the same for complex fixed
points? We accomplish this in stages.

1. First, we use the transitivity theorem for fixed point logic to move nested fixed points into
simultaneous fixed points without nesting.

2. Next, we use the simultaneous induction lemma for fixed point logic to encode the relation
to be computed as a “section” of a single LFP relation of higher arity.

3. At this point, the picture of the preceding sections applies, except that we have to book-
keep for a k-ary relation that is being computed. The property of “bounded number of
local neighborhoods” holds at each stage, except the conditions on the neighborhoods
could be expressed in terms of k coordinates instead of just one.

Alternatively, we could work over a product structure where LFP captures the class of
polynomial time computable queries. In other words, we have to work in a structure
whose elements are k-tuples of our original structure. In this way, a k-ary LFP over the
original structure would be a monadic LFP over this structure.

Steps 1 and 2 involve standard constructions in finite model theory, which we recall in Ap-
pendix A. See also [EF06, §8.2]. In order to accomplish step 3, we simply have to ensure that our
original structure has a relation that allows an order to be established on k-tuples. In particular
this does not pose a problem for encoding instances of k-SAT. The basic nature of information
gathering and processing in LFP does not change when the arity of the computation rises. It
merely adds the ability to gather polynomially more information at each stage, but this infor-
mation is still “bounded number of local neighborhoods at each stage.”

Remark 4.12. Note that there are elegant ways to work with the space of equivalence classes
of k-tuples with equivalence under first order logic with k-variables. For instance, one can
consider a construction known as the canonical structure due originally to [DLW95] who used it
to provide a model theoretic proof of the important theorem in [AV95] that P = PSPACE if
and only if LFP = PFP. Note that this is for all structures, not just for ordered structures.

The issue one faces is that there is a linear order on the canonical structure, which renders
the Gaifman graph trivial (totally connected). See [Lib04, §11.5] for more details on canonical
structures. The simple scheme described above suffices for our purposes.

4.4 Aggregate Properties of LFP over Ensembles

We have shown that any polynomial time computation will update its relation according to
a certain Markov type property on the space of k-types of the underlying structure, after ex-
tracting a statistic from the local neighborhoods of the underlying structure. Thus far, there is
no probabilistic picture, or a distribution that we can analyze. We are only describing a fully
deterministic computation.

The distribution we seek will arise when we examine the aggregate behavior of LFP over
ensembles of structures that come from ensembles of constraint satisfaction problems (CSPs) such
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as random k-SAT. When we examine the properties in the aggregate of LFP running over
ensembles, we will find that the “bounded number of local” property of each stage of LFP
computation manifests as conditional independencies in the distribution. This gives us the
setting where we can exploit the full machinery of graphical models of Chapter 2.

Before we examine the distributions arising from LFP acting on ensembles of structures, we
will bring in ideas from statistical physics into the proof. We begin this in the next chapter.
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5. The 1RSB Ansatz of Statistical
Physics

5.1 Ensembles and Phase Transitions

The study of random ensembles of various constraint satisfaction problems (CSPs) is over two
decades old, dating back at least to [CF86]. While a given CSP — say, 3-SAT— might be
NP-complete, many instances of the CSP might be quite easy to solve, even using fairly simple
algorithms. Furthermore, such “easy” instances lay in certain well defined regimes of the CSP,
while “harder” instances lay in clearly separated regimes. Thus, researchers were motivated
to study randomly generated ensembles of CSPs having certain parameters that would specify
which regime the instances of the ensemble belonged to. We will see this behavior in some
detail for the specific case of the ensemble known as random k-SAT.

An instance of k-SAT is a propositional formula in conjunctive normal form

Φ = C1 ∧ C2 ∧ · · · ∧ Cm

havingm clausesCi, each of whom is a disjunction of k literals taken from n variables {x1, . . . , xn}.
The decision problem of whether a satisfying assignment to the variables exists is NP-complete
for k ≥ 3. The ensemble known as random k-SAT consists of instances of k-SAT generated
randomly as follows. An instance is generated by drawing each of the m clauses {C1, . . . , Cm}
uniformly from the 2k

(
n
k

)
possible clauses having k variables. The entire ensemble of random

k-SAT having m clauses over n literals will be denoted by SATk(n,m), and a single instance
of this ensemble will be denoted by Φk(n,m). The clause density, denoted by α and defined as
α := m/n is the single most important parameter that controls the geometry of the solution
space of random k-SAT. Thus, we will mostly be interested in the case where every formula
in the ensemble has clause density α. We will denote this ensemble by SATk(n, α), and an
individual formula in it by Φk(n, α).

Random CSPs such as k-SAT have attracted the attention of physicists because they model
disordered systems such as spin glasses where the Ising spin of each particle is a binary variable
(”up” or “down”) and must satisfy some constraints that are expressed in terms of the spins of
other particles. The energy of such a system can then be measured by the number of unsatisfied
clauses of a certain k-SAT instance, where the clauses of the formula model the constraints
upon the spins. The case of zero energy then corresponds to a solution to the k-SAT instance.
The following formulation is due to [MZ97]. First we translate the Boolean variables xi to Ising
variables Si in the standard way, namely Si = −(−1)xi . Then we introduce new variables Cli as
follows. The variable Cli is equal to 1 if the clause Cl contains xi, it is −1 if the clause contains
¬xi, and is zero if neither appears in the clause. In this way, the sum

∑n
i=1 CliSi measures the

satisfiability of clause Cl. Specifically, if
∑n
i=1 CliSi − k > 0, the clause is satisfied by the Ising
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variables. The energy of the system is then measured by the Hamiltonian

H =

m∑
i=1

δ(

n∑
i=1

CliSi,−K).

Here δ(i, j) is the Kronecker delta. Thus, satisfaction of the k-SAT instance translates to vanish-
ing of this Hamiltonian. Statistical mechanics then offers techniques such as replica symmetry,
to analyze the macroscopic properties of this ensemble.

Also very interesting from the physicist’s point of view is the presence of a sharp phase
transition [CKT91, MSL92] (see also [KS94]) between satisfiable and unsatisfiable regimes of
random k-SAT. Namely, empirical evidence suggested that the properties of this ensemble
undergoes a clearly defined transition when the clause density is varied. This transition is
conjectured to be as follows. For each value of k, there exists a transition threshold αc(k) such
that with probability approaching 1 as n→∞ (called the Thermodynamic limit by physicists),

• if α < αc(k), an instance of random k-SAT is satisfiable. Hence this region is called the
SAT phase.

• If α > αc(k), an instance of random k-SAT is unsatisfiable. This region is known as the
unSAT phase.

There has been intense research attention on determining the numerical value of the threshold
between the SAT and unSAT phases as a function of k. [Fri99] provides a sharp but non-uniform
construction (namely, the value αc is a function of the problem size, and is conjectured to con-
verge as n→∞). Functional upper bounds have been obtained using the first moment method
[MA02] and improved using the second moment method [AP04] that improves as k gets larger.

5.2 The d1RSB Phase

More recently, another thread on this crossroad has originated once again from statistical physics
and is most germane to our perspective. This is the work in the progression [MZ97], [BMW00],
[MZ02], and [MPZ02] that studies the evolution of the solution space of random k-SAT as the
constraint density increases towards the transition threshold. In these papers, physicists have
conjectured that there is a second threshold that divides the SAT phase into two — an “easy”
SAT phase, and a “hard” SAT phase. In both phases, there is a solution with high probability,
but while in the easy phase one giant connected cluster of solutions contains almost all the so-
lutions, in the hard phase this giant cluster shatters into exponentially many communities that
are far apart from each other in terms of least Hamming distance between solutions that lie in
distinct communities. Furthermore, these communities shrink and recede maximally far apart
as the constraint density is increased towards the SAT-unSAT threshold. As this threshold is
crossed, they vanish altogether.

As the clause density is increased, a picture known as the “1RSB hypothesis” emerges that
is illustrated in Fig. 5.1, and described below.

RS For α < αd, a problem has many solutions, but they all form one giant cluster within
which going from one solution to another involves flipping only a finite (bounded) set of
variables. This is the replica symmetric phase.

d1RSB At some value of α = αd which is below αc, it has been observed that the space of
solutions splits up into “communities” of solutions such that solutions within a commu-
nity are close to one another, but are far away from the solutions in any other community.
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This effect is known as shattering [ACO08]. Within a community, flipping a bounded finite
number of variable assignments on one satisfying takes one to another satisfying assign-
ment. But to go from one satisfying assignment in one community to a satisfying assign-
ment in another, one has to flip a fraction of the set of variables and therefore encounters
what physicists would consider an “energy barrier” between states. This is the dynamical
one step replica symmetry breaking phase.

unSAT Above the SAT-unSAT threshold, the formulas of random k-SAT are unsatisfiable with
high probability.

Using statistical physics methods, [KMRT+07] obtained another phase that lies between
d1RSB and unSAT. In this phase, known as 1RSB (one step replica symmetry breaking), there is
a “condensation” of the solution space into a sub-exponential number of clusters, and the sizes
of these clusters go to zero as the transition occurs, after which there are no more solutions. This
phase has not been proven rigorously thus far to our knowledge and we will not revisit it in
this work.

The 1RSB hypothesis has been proven rigorously for high values of k. Specifically, the ex-
istence of the d1RSB phase has been proven rigorously for the case of k > 8, starting with
[MMZ05] (see also [DMMZ08]) who showed the existence of clusters in a certain region of the
SAT phase using first moment methods. Later, [ART06] rigorously proved that there exist ex-
ponentially many clusters in the d1RSB phase and showed that within any cluster, the fraction
of variables that take the same value in the entire cluster (the so-called frozen variables) goes to
one as the SAT-unSAT threshold is approached. Further [ACO08] obtained analytical expres-
sions for the threshold at which the solution space of random k-SAT (as also two other CSPs —
random graph coloring and random hypergraph 2-colorability) shatters, as well as confirmed
the O(n) Hamming separation between clusters.

αd αcα

Figure 5.1: The clustering of solutions just before the SAT-unSAT threshold. Below αd, the space
of solution is largely connected. Between αd and αc, the solutions break up into exponentially
many communities. Above αc, there are no more solutions, which is indicated by the unfilled
circle.

In summary, in the region of constraint density α ∈ [αd, αc], the solution space is comprised
of exponentially many communities of solutions which require a fraction of the variable assign-
ments to be flipped in order to move between each other.

5.2.1 Cores and Frozen Variables

In this section, we reproduce results about the distribution of variable assignments within each
cluster of the d1RSB phase from [MMW07], [ART06], and [ACO08].
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We first need the notion of the core of a cluster. Given any solution in a cluster, one may
obtain the core of the cluster by “peeling away” variable assignments that, loosely speaking
occur only in clauses that are satisfied by other variable assignments. This process leads to the
core of the cluster.

To get a formal definition, first we define a partial assignment of a set of variables (x1, . . . , xn)
as an assignment of each variable to a value in {0, 1, ∗}. The ∗ assignment is akin to a “joker
state” which can take whichever value is most useful in order to satisfy the k-SAT formula.

Next, we say that a variable in a partial assignment is free when each clause it occurs in has
at least one other variable that satisfies the clause, or has as assignment to ∗.

Finally, to obtain the core of a cluster, we repeat the following starting with any solution in
the cluster: if a variable is free, assign it a ∗.

This process will eventually lead to a fixed point, and that is the core of the cluster. We may
easily see that the core is not dependent upon the choice of the initial solution.

What does the core of a cluster look like? Recall that the core is itself a partial assignment,
with each variable being assigned a 0, 1 or a ∗. Of obvious interest are those variables that are
assigned 0 or 1. These variables are said to be frozen. Note that since the core can be arrived at
starting from any choice of an initial solution in the cluster, it follows that frozen variables take
the same value throughout the cluster. For example, if the variable xi takes value 1 in the core
of a cluster, then every solution lying in the cluster has xi assigned the value 1. The non-frozen
variables are those that are assigned the value ∗ in the core. These take both values 0 and 1 in
the cluster. Clearly the number of ∗ variables is a measure of the internal entropy (and therefore
the size) of a cluster since it is only these variables whose values vary within the cluster.

Apriori, we have no way to tell that the core will not be the all ∗ partial assignment. Namely,
we do not know whether there are any frozen variables at all. However, [ART06] proved that for
high enough values of k, with probability going to 1 in the thermodynamic limit, almost every
variable in a core is frozen as we increase the clause density towards the SAT-unSAT threshold.

Theorem 5.1 ([ART06]). For every r ∈ [0, 1
2 ] there is a constant kr such that for all k ≥ kr, there exists

a clause density α(k, r) < αc such that for all α ∈ [α(k, r), αc], asymptotically almost surely

1. every cluster of solutions of Φk(n, αn) has at least (1− r)n frozen variables,

2. fewer than rn variables take the value ∗.

We end this section with a physical picture of what forms a core. If a formula Φ has a
core with C clauses, then these clauses must have literals that come from a set of at most C
variables. By bounding the probability of this event, [MMW07] obtained a lower bound on the
size of cores. The bound is linear, which means that when cores do exist ( [ART06] proved their
existence for sufficiently high k), they must involve a fraction of all the variables in the formula.
In other words, a core may be thought of as the onset of a large single interaction of degreeO(n)
among the variables. As the reader may imagine after reading the previous chapters, this sort
of interaction cannot be dealt with by LFP algorithms. We will need more work to make this
precise, but informally cores are too large to pass through the bottlenecks that the stage-wise
first order LFP algorithms create.

This may also be interpreted as follows. Algorithms based on LFP can tackle long range
interactions between variables, but only when they can be factored into interactions of degree
poly(log n). The exact degree is determined by the LFP algorithm — those that take more time
to complete can deal with higher degrees, but it is always poly(log n). But the appearance of
cores is equivalent to the onset of O(n) degree interactions which cannot be further factored
into poly(log n) degree interactions. Such large interactions, caused by increasing the clause
density sufficiently, cannot be dealt with using an LFP algorithm.
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We have already noted that this is because LFP algorithms factor through first order com-
putations, and in a first order computation, the decision of whether an element is to enter the
relation being computed is based on information collected from local neighborhoods and com-
bined in a bounded fashion. This bottleneck is too small for a core to factor through. The
precise statement of this intuitive picture will be provided in the next chapter when we build
our conditional independence hierarchies.

5.2.2 Performance of Known Algorithms

We end this chapter with a brief overview of the performance of known algorithms as a function
of the clause density, and pointers to more detailed surveys.

Beginning with [CKT91] and [MSL92], there has been an understanding that hard instances
of random k-SAT tend to occur when the constraint density α is near the transition threshold,
and that this behavior was similar to phase transitions in spin glasses [KS94]. Now that we
have surveyed the known results about the geometry of the space of solutions in this region,
we turn to the question of how the two are related.

It has been empirically observed that the onset of the d1RSB transition seems to coincide
with the constraint density where traditional solvers tend to exhibit exponential slowdown; see
[ACO08] and [CO09]. See also [CO09] for the best current algorithm along with a comparison
of various other algorithms to it. Thus, while both regimes in SAT have solutions with high
probability, the ease of finding a solution differs quite dramatically on traditional SAT solvers
due to a clustering of the solution space into numerous communities that are far apart from
each other in terms of Hamming distance. In particular, for clause densities above O(2k/k), no
algorithms are known to produce solutions in polynomial time with probability Ω(1). Compare
this to the SAT-unSAT threshold, which is asymptotically 2k ln 2. Thus, well below the SAT-
unSAT threshold, in regimes where we know solutions exist, we are currently unable to find
them in polynomial time. Our work will explain that indeed, this is fundamentally a limitation
of polynomial time algorithms.

Incomplete algorithms are a class that do not always find a solution when it exists, nor do
they indicate the lack of solution except to the extent that they were unable to find one. In-
complete algorithms are obviously very important for hard regimes of constraint satisfaction
problems since we do not have complete algorithms in these regimes that have economical run-
ning times. More recently, a breakthrough for incomplete algorithms in this field came with
[MPZ02] who used the cavity method from spin glass theory to construct an algorithm named
survey propagation that does very well on instances of random k-SAT with constraint density
above the aforementioned clustering threshold, and continues to perform well very close to the
threshold αc for low values of k. Survey propagation seems to scale as n log n in this region.
The algorithm uses the 1RSB hypothesis about the clustering of the solution space into nu-
merous communities. The behavior of survey propagation for higher values of k is still being
researched.
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6. Random Graph Ensembles

We will use factor graphs as a convenient means to encode various properties of the random
k-SAT ensemble. In this section we introduce the factor graph ensembles that represent random
k-SAT. Our treatment of this section follows [MM09, Chapter 9].

Definition 6.1. The random k-factor graph ensemble, denoted by Gk(n,m), consists of graphs
having n variable nodes and m function nodes constructed as follows. A graph in the ensemble
is constructed by picking, for each of the m function nodes in the graph, a k-tuple of variables
uniformly from the

(
n
k

)
possibilities for such a k-tuple chosen from n variables.

Graphs constructed in this manner may have two function nodes connected to the same k-
tuple of variables. In this ensemble, function nodes all have degree k, while the degree of the
variable nodes is a random variable with expectation km/n.

Definition 6.2. The random (k, α)-factor graph ensemble, denoted by Gk(n, α), consists of graphs
constructed as follows. For each of the

(
n
k

)
k-tuples of variables, a function node that connects

to only these k variables is added to the graph with probability αn/
(
n
k

)
.

In this ensemble, the number of function nodes is a random variable with expectation αn,
and the degree of variable nodes is a random variable with expectation αk.

We will be interested in the case of the thermodynamic limit of n,m → ∞ with the ratio
α := m/n being held constant. In this case, both the ensembles converge in the properties
that are important to us, and both can be seen as the underlying factor graph ensembles to our
random k-SAT ensemble SATk(n, α) (see Chapter 5 for definitions and our notation for random
k-SAT ensembles).

With the definitions in place, we are ready to describe two properties of random graph
ensembles that are pertinent to our problem.

6.1 Properties of Factor Graph Ensembles

The first property provides us with intuition on why algorithms find it so hard to put together
local information to form a global perspective in CSPs.

6.1.1 Locally Tree-Like Property

We have seen in Chapter 4 that the propagation of influence of variables during a LFP compu-
tation is stagewise-local. This is really the fundamental limitation of LFP that we seek to exploit.
In order to understand why this is a limitation, we need to examine what local neighborhoods
of the factor graphs underlying NP-complete problems like k-SAT look like in hard phases
such as d1RSB. In such phases, there are many extensive (meaning O(n)) correlations between
variables that arise due to loops of sizes O(log n) and above.
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However, remarkably, such graphs are locally trivial. By that we mean that there are no cycles
in a O(1) sized neighborhood of any vertex as the size of the graph goes to infinity [MM09,
§9.5]. One may demonstrate this for the Erdos-Renyi random graph as follows. Here, there are
n vertices, and there is an edge between any two with probability c/n where c is a constant
that parametrizes the density of the graph. Edges are “drawn” uniformly and independently
of each other. Consider the probability of a certain graph (V,E) occurring as a subgraph of the
Erdos-Renyi graph. Such a graph can occur in

(
n
|V |
)

positions. At each position, the probability
of the graph structure occurring is

p|E|(1− p)
|V |
2 −|E|.

Applying Stirling’s approximations, we see that such a graph occurs asymptoticallyO(|V |−|E|)
times. If the graph is connected, |V | ≤ |E| − 1 with equality only for trees. Thus, in the limit of
n→∞, finite connected graphs have vanishing probability of occurring in finite neighborhoods
of any element.

In short, if only local neighborhoods are examined, the two ensembles Gk(n,m) and Tk(n,m)
are indistinguishable from each other.

Theorem 6.3. LetG be a randomly chosen graph in the ensemble Gk(n,m), and i be a uniformly chosen
node in G. Then the r-neighborhood of i in G converges in distribution to Tk(n,m) as n→∞.

Let us see what this means in terms of the information such graphs divulge locally. The
simplest local property is degrees of elements. These are, of course, available through local
inspection. The next would be small connected subgraphs (triangles, for instance). But even
this next step is not available. In other words, such random graphs do not provide any of their
global properties through local inspection at each element.

Let us think about what this implies. We know from the onset of cores and frozen variables
in the 1dRSB phase of k-SAT that there are strong correlations between blocks of variables of
sizeO(n) in that phase. However, these loops are invisible when we inspect local neighborhoods
of a fixed finite size, as the problem size grows.

6.1.2 Degree Profiles in Random Graphs

The degree of a variable node in the ensemble Gk(n,m) is a random variable. We wish to under-
stand the distribution of this random variable. The expected value of the fraction of variables
in Gk(n,m) having degree d is the same as the expected value that a single variable node has
degree d, both being equal to

P (deg vi = d) =

(
m

d

)
pk(1− p)m−d where p =

k

d
.

In the large graph limit we get

lim
n→∞

P (deg vi = d) = e−kα
(kα)d

n !
.

In other words, the degree is asymptotically a Poisson random variable.
A corollary is that the maximum degree of a variable node is almost surely less thanO(log n)

in the large graph case.
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Lemma 6.4. The maximum variable node degree in Gk(n,m) is asymptotically almost surely O(log n).
In particular, it asymptotically almost surely satisfies the following

dmax

kαe
=

z

log(z/ log z)

[
1 + Θ

(
log log z

(log z)2

)]
. (6.1)

where z = (log n)/kαe.

Proof. See [MM09, p. 184] for a discussion of this upper bound, as well as a lower bound. �
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7. Separation of Complexity Classes

We have built a framework that connects ideas from graphical models, logic, statistical mechan-
ics, and random graphs. We are now ready to begin our final constructions that will yield the
separation of complexity classes.

7.1 Measuring Conditional Independence

The central concern of this work has been to understand what are the irreducible interactions
between the variables in a system — namely, those that cannot be expressed in terms of inter-
actions between smaller sets of variables with conditional independencies between them. Such
irreducible interactions can be 2-interactions (between pairs), 3-interactions (between triples),
and so on, up to n-interactions between all n variables simultaneously.

A joint distribution encodes the interaction of a system of n variables. What would happen
if all the direct interactions between variables in the system were all of less than a certain finite
range k, with k < n? In such a case, the “jointness” of the covariates really would lie at a
lower “level” than n. We would like to measure the “level” of conditional independence in
a system of interacting variables by inspecting their joint distribution. At level zero of this
“hierarchy”, the covariates should be independent of each other. At level n, they are coupled
together n at a time, without the possibility of being decoupled. In this way, we can make
statements about how deeply entrenched the conditional independence between the covariates
is, or dually, about how large the set of direct interactions between variables is.

This picture is captured by the number of independent parameters required to parametrize
the distribution. When the largest irreducible interactions are k-interactions, the distribution
can be parametrized with n2k independent parameters. Thus, in families of distributions where
the irreducible interactions are of fixed size, the independent parameter space grows polynomi-
ally with n, whereas in a general distribution without any conditional independencies, it grows
exponentially with n. The case of LFP lies in between — the interactions are not of fixed size,
but they grow relatively slowly.

There are some technical issues with constructing such a hierarchy to measure conditional
independence. The first issue would be how to measure the level of a distribution in this hier-
archy. If, for instance, the distribution has a directed P-map, then we could measure the size
of the largest clique that appears in its moralized graph. However, as noted in Sec. 2.5, not
all distributions have such maps. We may, of course, upper and lower bound the level using
minimal I-maps and maximal D-maps for the distribution. In the case of ordered graphs, we
should note that there may be different minimal I-maps for the same distribution for different
orderings of the variables. See [KF09, p. 80] for an example.

The insight that allows us to resolve the issue is as follows. If we could somehow embed the
distribution of solutions generated by LFP into a larger distribution, such that

1. the larger distribution factorized recursively according to some directed graphical model,
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and

2. the larger distribution had only polynomially many more variates than the original one,

then we would have obtained a parametrization of our distribution that would reflect the fac-
torization of the larger distribution, and would cost us only polynomially more, which does not
affect us.

By pursuing the above course, we aim to demonstrate that distributions of solutions gener-
ated by LFP lie at a lower level of conditional independence than distributions that occur in the
d1RSB phase of random k-SAT. Consequently, they have more economical parametrizations
than the space of solutions in the 1dRSB phase does.

We will return to the task of constructing such an embedding in Sec. 7.3. First we describe
how we use LFP to create a distribution of solutions.

7.2 Generating Distributions from LFP

7.2.1 Encoding k-SAT into Structures

In order to use the framework from Chapters 3 and 4, we will encode k-SAT formulae as struc-
tures over a fixed vocabulary.

Our vocabularies are relational, and so we need only specify the set of relations, and the set
of constants. We will use three relations.

1. The first relation RC will encode the clauses that a SAT formula comprises. Since we are
studying ensembles of random k-SAT, this relation will have arity k.

2. We need a relation in order to make FO(LFP) capture polynomial time queries on the class
of k-SAT structures. We will not introduce a linear ordering since that would make the
Gaifman graph a clique. Rather we will include a relation such that FO(LFP) can capture
all the polynomial time queries on the structure. This will be a binary relation RE .

3. Lastly, we need a relation RP to hold “partial assignments” to the SAT formulae. We will
describe these in the Sec. 7.2.3.

4. We do not require constants.

This describes our vocabulary
σ = {RC , RE , RP }.

Next, we come to the universe. A SAT formula is defined over n variables, but they can come
either in positive or negative form. Thus, our universe will have 2n elements corresponding to
the variables x1, . . . , xn,¬x1, . . . ,¬xn. In order to avoid new notation, we will simply use the
same notation to indicate the corresponding element in the universe. We denote by lower case
xi the literals of the formula, while the corresponding upper case Xi denotes the corresponding
variable in a model.

Finally, we need to interpret our relations in our universe. We dispense with the superscripts
since the underlying structure is clear. The relationRC will consist of k-tuples from the universe
interpreted as clauses consisting of disjunctions between the variables in the tuple. The relation
RE will be interpreted as an “edge” between successive variables. The relation RP will be a
partial assignment of values to the underlying variables.

Now we encode our k-SAT formulae into σ-structures in the natural way. For example,
for k = 3, the clause x1 ∨ ¬x2 ∨ ¬x3 in the SAT formula will be encoded by inserting the
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tuple (x1,¬x2,¬x3) in the relation RC . Similarly, the pairs (xi, xi+1) and (¬xi,¬xi+1), both for
1 ≤ i < n, as well as the pair (xn,¬x1) will be in the relation RE . This chains together the
elements of the structure.

The reason for the relation RE that creates the chain is that on such structures, polynomial
time queries are captured by FO(LFP) [EF06, §11.2]. This is a technicality. Recall that an order
on the structure enables the LFP computation (or the Turing machine the runs this computation)
to represent tuples in a lexicographical ordering. In our problem k-SAT, it plays no further role.
Specifically, the assignments to the variables that are computed by the LFP have nothing to do
with their order. They depend only on the relation RC which encodes the clauses and the rela-
tion RP that holds the initial partial assignment that we are going to ask the LFP to extend. In
other words, each stage of the LFP is order-invariant. It is known that the class of order invariant
queries is also Gaifman local [GS00]. However to allow LFP to capture polynomial time on the
class of encodings, we need to give the LFP something it can use to create an ordering. We could
encode our structures with a linear order, but that would make the Gaifman graph fully con-
nected. What we want is something weaker, that still suffices. Thus, we encode our structures
as successor-type structures through the relation RE . This seems most natural, since it imparts
on the structure an ordering based on that of the variables. Note also that SAT problems may
also be represented as matrices (rows for clauses, columns for variables that appear in them),
which have a well defined notion of order on them.

Ensembles of k-SAT Let us now create ensembles of σ-structures using the encoding de-
scribed above. We will start with the ensemble SATk(n, α) and encode each k-SAT instance as
a σ-structure. The resulting ensemble will be denoted by Sk(n, α). The encoding of the problem
Φk(n, α) as a σ-structure will be denoted by Pk(n, α).

7.2.2 The LFP Neighborhood System

In this section, we wish to describe the neighborhood system that underlies the monadic LFP
computations on structures of Sk(n, α). We begin with the factor graph, and build the neigh-
borhood system through the Gaifman graph.

Let us recall the factor graph ensemble Gk(n,m). Each graph in this ensemble encodes
an instance of random k-SAT. We encode the k-SAT instance as a structure as described in
the previous section. Next, we build the Gaifman graph of each such structure. The set of
vertices of the Gaifman graph are simply the set of variable nodes in the factor graph and their
negations since we are using both variables and their negations for convenience (this is simply
an implementation detail). For instance, the Gaifman graph for the factor graph of Fig 2.2 will
have 12 vertices. Two vertices are joined by an edge in the Gaifman graph either when the two
corresponding variable nodes were joined to a single function node (i.e., appeared in a single
clause) of the factor graph or if they are adjacent to each other in the chain that relation RE has
created on the structure.

On this Gaifman graph, the simple monadic LFP computation induces a neighborhood sys-
tem described as follows. The sites of the neighborhood system are the variable nodes. The
neighborhood Ns of a site s is the set of all nodes that lie in the r-neighborhood of a site, where
r is the locality rank of the first order formula ϕ whose fixed point is being constructed by the
LFP computation.

Finally, we make the neighborhood system into a graph in the standard way. Namely, the
vertices of the graph will be the set of sites. Each site s will be connected by an edge to every
other site in Ns. This graph will be called the interaction graph of the LFP computation. The
ensemble of such graphs, parametrized by the clause density α, will be denoted by Ik(n, α).
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Note that this interaction graph has many more edges in general than the Gaifman graph.
In particular, every node that was within the locality rank neighborhood of the Gaifman graph
is now connected to it by a single edge. The resulting graph is, therefore, far more dense than
the Gaifman graph.

What is the size of cliques in this interaction graph? This is not the same as the size of cliques
in the factor graph, or the Gaifman graph, because the density of the graph is higher. The size
of the largest clique is a random variable. What we want is an asymptotic almost sure (by this
we mean with probability tending to 1 in the thermodynamic limit) upper bound on the size of
the cliques in the distribution of the ensemble Ik(n, α).

Note: From here on, all the statements we make about ensembles should be understood to hold asymp-
totically almost surely in the respective random ensembles. By that we mean that they hold with proba-
bility 1 as n→∞.

Lemma 7.1. The size of cliques that appear in graphs of the ensemble Ik(n, α) are upper bounded by
poly(log n) asymptotically almost surely.

Proof. Let dmax be as in (6.1), and r be the locality rank of ϕ. The maximum degree of a node
in the Gaifman graph is asymptotically almost surely upper bounded by dmax = O(log n). The
locality rank is a fixed number (roughly equal to 3d where d is the quantifier depth of the first
order formula that is being iterated). The node under consideration could have at most dmax

others adjacent to it, and the same for those, and so on. This gives us a coarse drmax upper bound
on the size of cliques. �

Remark 7.2. While this bound is coarse, there is not much point trying to tighten it because any
constant power factor (r in the case above) can always be introduced by computing a r-ary LFP
relation. This bound will be sufficient for us.

Remark 7.3. High degree nodes in the Gaifman graph become significant features in the interac-
tion graph since they connect a large number of other nodes to each other, and therefore allow
the LFP computation to access a lot of information through a neighborhood system of given
radius. It is these high degree nodes that reduce factorization of the joint distribution since they
represent direct interaction of a large number of variables with each other. Note that although
the radii of neighborhoods areO(1), the number of nodes in them is notO(1) due to the Poisson
distribution of the variable node degrees, and the existence of high degree nodes.

Remark 7.4. The relation being constructed is monadic, and so it does not introduce new edges
into the Gaifman graph at each stage of the LFP computation. When we compute a k-ary LFP,
we can encode it into a monadic LFP over a polynomially (nk) larger product space, as is done
in the canonical structure, for instance, but with the linear order replaced by a weaker succes-
sor type relation. Therefore, we can always chose to deal with monadic LFP. This is really a
restatement of the transitivity principle for inductive definitions that says that if one can write
an inductive definition in terms of other inductively defined relations over a structure, then one
can write it directly in terms of the original relations that existed in the structure [Mos74, p. 16].

7.2.3 Generating Distributions

The standard scenario in finite model theory is to ask a query about a structure and obtain a
Yes/No answer. For example, given a graph structure, we may ask the query “Is the graph
connected?” and get an answer.

But what we want are distributions of solutions that are computed by a purported LFP al-
gorithm for k-SAT. This is not generally the case in finite model theory. Intuitively, we want
to generate solutions lying in exponentially many clusters of the solution space of SAT in the

45



7. SEPARATION OF COMPLEXITY CLASSES 46

d1RSB phase. How do we do this? To generate these distributions, we will start with partial
assignments to the set of variables in the formula, and ask the question whether such a partial
assignment can be extended to a satisfying assignment. Since the answer to such a question can
be verified in polynomial time, such a query must be expressible in FO(LFP) itself on our en-
coding of k-SAT into structures if P = NP. In fact, through the self-reducibility of SAT, we can
see that the resulting assignment will itself be expressible as a LFP computable global relation.

Since we want to generate exponentially many such solutions, we will have to partially as-
sign O(n) (a small fraction) of the variables, and ask the LFP to extend this assignment, when-
ever possible, to a satisfying assignment to all variables. Thus, we now see what the relation
RP in our vocabulary stands for. It holds the partial assignment to the variables. For example,
suppose we want to ask whether the partial assignment x1 = 1, x2 = 0, x3 = 1 can be extended
to a satisfying assignment to the SAT formula, we would store this partial assignment in the
tuple (x1,¬x2, x3) in the relation RP in our structure.

The output satisfying assignment will be computed as a unary relation which holds all the
literals that are assigned the value 1. This means that xi is in the relation if xi has been assigned
the value 1 by the LFP, and otherwise¬xi is in the relation meaning that xi has been assigned the
value 0 by the LFP computation. This is the simplest case where the FO(LFP) formula is simple
monadic. For more complex formulas, the output will be some section of a relation of higher
arity (please see Appendix A for details), and we will view it as monadic over a polynomially
larger structure.

Now we “initialize” our structure with different partial assignments and ask the LFP to
compute complete assignments when they exist. If the partial assignment cannot be extended,
we simply abort that particular attempt and carry on with other partial assignments until we
generate enough solutions. By “enough” we mean rising exponentially with the underlying
problem size. In this way we get a distribution of solutions that is exponentially numerous, and
we now analyze it and compare it to the one that arises in the d1RSB phase of random k-SAT.

7.3 Disentangling the Interactions: The ENSP Model

Now that we have a distribution of solutions computed by LFP, we would like to examine
its conditional independence characteristics. Does it factor through any particular graphical
model, for instance?

In Chapter 2, we considered various graphical models and their conditional independence
characteristics. Once again, our situation is not exactly like any of these models. We will have
to build our own, based on the principles we have learnt. Let us first note two issues.

The first issue is that graphical models considered in literature are mostly static. By this we
mean that

1. they are of fixed size, over a fixed set of variables, and

2. the relations between the variables encoded in the models are fixed.

In short, they model fixed interactions between a fixed set of variables. Since we wish to
apply them to the setting of complexity theory, we are interested in families of such models,
with a focus on how their structure changes with the problem size.

The second issue that faces us now is as follows. Even within a certain size n, we do not have
a fixed graph on n vertices that will model all our interactions. The way a LFP computation
proceeds through the structure will, in general, vary with the initial partial assignment. We
would expect a different “trajectory” of the LFP computation for different clusters in the 1dRSB
phase. So, if one initial partial assignment landed us in cluster X, and another in cluster Y, the
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way the LFP would go about assigning values to the unassigned variables would be, in general,
quite different. Even within a cluster, the trajectories of two different initial partial assignments
will not be the same, although we would expect them to be similar. How do we deal with this
situation?

In order to model this dynamic behavior, let us build some intuition first.

1. We know that there is a “directed-ness” to LFP in that elements that are assigned values at
a certain stage of the computation then go on to influence other elements who are as yet
unassigned. Thus, there is a directed flow of influence as the LFP computation progresses.
This is, for example, different from a Markov random field distribution which has no such
direction.

2. There are two types of flows of information in a LFP computation. Consider simple
monadic LFP. In one type of flow, neighborhoods across the structure influence the value
an unassigned node will take. In the other type of flow, once an element is assigned a
value, it changes the neighborhoods (or more precisely the local types of various other
elements) in its vicinity. Note that while the first type of flow happens during a stage of
the LFP, the second type is implicit. Namely, there is no separate stage of the LFP where
it happens. It implicitly happens once any element enters the relation being computed.

3. Because the flow of information is as described above, we will not be able to express it
using a simple DAG on either the set of vertices, or the set of neighborhoods. Thus, we
have to consider building a graphical model on certain larger product spaces.

4. The stage-wise nature of LFP is central to our analysis, and the various stages cannot be
bundled into one without losing crucial information. Thus, we do need a model which
captures each stage separately.

5. In order to exploit the factorization properties of directed graphical models, and the result-
ing parametrization by potentials, we would like to avoid any closed directed paths.

Let us now incorporate this intuition into a model, which we will call a Element-Neighborhood-
Stage Product Model, or ENSP model for short. This model appears to be of independent inter-
est. We now describe the ENSP model for a simple monadic least fixed point computation. The
model is illustrated in Fig. 7.1. It has two types of vertices.

Element Vertices These vertices, which encode the variables of the k-SAT instance, are rep-
resented by the smaller circles in Fig. 7.1. They therefore correspond to elements in the
structure (recall that elements of the structure represent the literals in the k-SAT formula).
However, each variable in our original system X1, . . . , Xn is represented by a different vertex at
each stage of the computation. Thus, each variable in the original system gives rise to |ϕA|
vertices in the ENSP model. Also recall that there are 2n elements in the k-SAT structure,
where n is the number of variables in the SAT formula. However, in Fig 7.1, we have only
shown one vertex per variable, and allowed it to be colored two colors - green indicating
the variable has been assigned a value of +1, and red indicating the variable has been
assigned the value −1. Since the underlying formula ϕ that is being iterated is positive,
elements do not change their color once they have been assigned.

Neighborhood Vertices These vertices, denoted by the larger circles with blue shading in Fig. 7.1,
represent the r-neighborhoods of the elements in the structure. Just like variables, each
neighborhood is also represented by a different vertex at each stage of the LFP com-
putation. Each of their possible values are the possible isomorphism types of the r-
neighborhoods, namely, the local r-types of the corresponding element. These vertices
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Figure 7.1: The Element-Neighborhood-Stage Product (ENSP) model for LFPϕ. See text for description.
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may be thought of as vectors of size poly(log n) corresponding to the cliques that occur in
the neighborhood system we described in Sec. 7.2.2, or one may think of them as a single
variable taking the value of the various local r-types.

Now we describe the stages of the ENSP. There are 2|ϕA| stages, starting from the leftmost
and terminating at the rightmost. Each stage of the LFP computation is represented by two
stages in the ENSP. Initially, at the start of the LFP computation, we are in the left-most stage.
Here, notice that some variable vertices are colored green, and some red. In the figure, X4,1 is
green, and Xi,1 is red. This indicates that the initial partial assignment that we provided the
LFP had variable X4 assigned +1 and variable Xi assigned −1. In this way, a small fraction
O(n) of the variables are assigned values. The LFP is asked to extend this partial assignment to
a complete satisfying assignment on all variables (if it exists, and abort if not).

Let us now look at the transition to the second stage of the ENSP. At this stage, based on
the conditions expressed by the formula ϕ in terms of their own local neighborhoods, and the
existence of a bounded number of other local neighborhoods in the structure, some elements
enter the relation. This means they get assigned +1 or −1. In the figure, the variable X3,2

takes the color green based on information gathered from its own neighborhood N(X3,1) and
two other neighborhoods N(X2,1) and N(Xn−1,1). This indicates that at the first stage, the
LFP assigned the value +1 to the variable X3. Similarly, it assigns the value −1 to variable
Xn (remember that the first two stages in the ENSP correspond to the first stage of the LFP
computation). The vertices that do not change state simply transmit their existing state to the
corresponding vertices in the next stage by a horizontal arrow, which we do not show in the
figure in order to avoid clutter.

Once some variables have been assigned values in the first stage, their neighborhoods, and
the neighborhoods in their vicinity (meaning, the neighborhoods of other elements that are in
their vicinity) change. This is indicated by the dotted arrows between the second and third
stages of the ENSP. Note that this happens implicitly during LFP computation. That is why we
have represented each stage of the actual LFP computation by two stages in the ENSP. The first
stage is the explicit stage, where variables get assigned values. The second stage is the implicit
stage, where variables “update their neighborhoods” and those neighborhoods in their vicinity.
For example, once X3 has been assigned the value +1, it updates its neighborhood and also the
neighborhood of variable X2 which lies in its vicinity (in this example). In this way, influence
propagates through the structure during a LFP computation. There are two stages of the ENSP
for each stage of the LFP. Thus, there are 2|ϕA| stages of the ENSP in all.

By the end of the computation, all variables have been assigned values, and we have a
satisfying assignment. The variables at the last stage Xi,|ϕA| are just the original Xi. Thus, we
recover our original variables (X1, . . . , Xn) by simply looking only at the last (rightmost in the
figure) level of the ENSP.

By introducing extra variables to represent each stage of each variable and each neighbor-
hood in the SAT formula, we have accomplished our original aim. We have embedded our
original set of variates into a polynomially larger product space, and obtained a directed graph-
ical model on this larger space. This product space has a nice factorization due to the directed
graph structure. This is what we will exploit.

Remark 7.5. The explicit stages of the ENSP also perform the task of propagating the local con-
straints placed by the various factors in the underlying factor graph outward into the larger
graphical model. For example, in our case of the factors encoding clauses of a k-SAT formula,
the local constraint placed by a clause is that the global assignment must evade exactly one
restriction to a specified set of k coordinates. For example, in the case of k = 3 the clause
x1 ∨ x2 ∨ ¬x3 permits all global assignments except those whose first three coordinates are
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(−1,−1,+1). In contrast, if the factor were a XORSAT clause, the local restrictions are all in the
form of linear spaces, and so the global solution is an intersection of such spaces. k-SAT asks a
question about whether certain spaces of the form

{ω : (ωi1 , . . . , ωik) 6= (ν1, . . . , νk)}

have non-empty intersections, where 1 ≤ i1 < i2 < · · · < ik ≤ n and the prohibited νi are ±1.
Note that these are O(1) local constraints per factor. In contrast, XORSAT asks the question
about whether certain linear spaces have a non-empty intersection. Linearity is a global con-
straint. Of course, all messages are coded into the formula ϕ. Thus, the end result of multiple
runs of the LFP will be a space of solutions conditioned upon the requirements. So, for instance,
if we were to try to solve XORSAT formulae, we would obtain a space that would be linear.

Thus, we have a directed graph with 2n + n = 3n vertices at each stage, and 2|ϕA| stages.
Since the LFP completes its computation in under a fixed polynomial number of steps, this
means that we have managed to represent the LFP computation on a structure as a directed
model using a polynomial overhead in the number of parameters of our representation space.
In other words, by embedding the covariates into a polynomially larger space, we have been
able to put a common structure on various computations done by LFP on them. In the ENSP
model, the covariates are recovered by restricting to the first n vertices in the bottom row, but
now we have a graphical model that can represent the underlying computation done in order to
get to that final state. Note that without embedding the covariates into a larger space, we would
not be able to place the various computations done by LFP into a single graphical model. The
insight that we can afford to incur a polynomial cost in order to obtain a common graphical
model on a larger product space was key to this section.

7.4 Parametrization of the ENSP

Our goal is to demonstrate the following.

If LFP were able to compute solutions to the d1RSB phase of random k-SAT, then the dis-
tribution of the entire space of solutions would have a substantially simpler parametrization
than we know it does.

In order to accomplish this, we need to measure the growth in the dimension of independent
parameters it requires to parametrize the distribution of solutions that we have just computed
using LFP.

In order to do this, we have embedded our variates into a polynomially larger space that
has factorization according to a directed model — the ENSP. We have seen that the cliques in
the ENSP are of size poly(log n). By employing the version of Hammersley-Clifford for directed
models, Theorem 2.13, we also know that we can parameterize the distribution by specifying a
system of potentials over its cliques, automatically ensuring conditional independence.

The directed nature of the ENSP also means that we can factor the resulting distribution into
conditional probability distributions (CPDs) at each vertex of the model of the formP (x | pa(x)),
and then normalize each CPD. Once again, each CPD will have scope only poly(log n). From
our perspective, the major benefit of directed graphical models is that we can do this always,
without any added positivity constraints. Recall that positivity is required in order to apply the
Hammersley-Clifford theorem to obtain factorizations for undirected models.

How do we compute the CPDs or potentials? We assign various initial partial assignments
to the variables as described in Sec. 7.2.3 and let the LFP computations run. We only consider
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successful computations, namely those where the LFP was able to extend the partial assignment
to a full satisfying assignment to the underlying k-SAT formula. We represent each stage of
the LFP computation on the corresponding two stages of the ENSP and thus obtain one full
instantiation of the representation space. We do this exponentially numerous times, and build
up our local CPDs by simply recording local statistics over all these runs. This gives us the
factorization (over the expanded representation space) of our distribution, assuming that P =
NP.

The ENSP for different runs of the LFP will, in general, be different. This is because the
flow of influences through the stages of the ENSP will, in general, depend on the initial partial
assignment. What is important is that each such model will have some properties — such as
largest clique size, which determines the order of the number of parameters — in common. Let
us inspect these properties that determine the parametrization of the ENSP model.

1. There are polynomially many more vertices in the ENSP model than elements in the un-
derlying structure.

2. Lemma 7.1 gives us a poly(log n) upper bound on the size of the neighborhoods. The
number of local r-types whose value each neighborhood vertex can take is 2poly(logn).

3. By Theorem 4.8 there is a fixed constant s such that there must exist s neighborhoods in
the structure satisfying certain local conditions for the formula to hold. Remember, we
are presently analyzing a single stage of the LFP. This again gives us poly(n) (O(ns) in
this case) different possibilities for each explicit stage of the ENSP. The same can also
be arrived at by utilizing the normal form of Theorem 4.9. By the previous point, each
of these possibilities can be parameterized by 2poly(logn) parameters, giving us a total of
2poly(logn) parameters required.

4. At each implicit stage of the ENSP, we have to update the types of the neighborhoods that
were affected by the induction of elements at the previous explicit stage. There are only n
neighborhoods, and each has poly(log n) elements at most.

The ENSP is an interaction model where direct interactions are of size poly(log n), and are chained
together through conditional independencies.

Proposition 7.6. A distribution that factorizes according to the ENSP can be parameterized with
2poly(logn) independent parameters. The scope of the factors in the parametrization grows as poly(log n).

This also underscores the principle that the description of the parameter space is simpler
because it only involves interactions between l variates at a time directly, and then chains these
together through conditional independencies. In the case of the LFP neighborhood system, the
size of the largest cliques are poly(log n) for each single run of the LFP. This will not change if
we were computing using complex fixed points since the space of k-types is only polynomially
larger than the underlying structure.

The crucial property of the distribution of the ENSP is that it admits a recursive factorization.
This is what drastically reduces the parameter space required to specify the distribution. It
also allows us to parametrize the ENSP by simply specifying potentials on its maximal cliques,
which are of size poly(log n).

While the entire distribution obtained by LFP may not factor according to any one ENSP,
it is a mixture of distributions each of whom factorizes as per some ENSP. Next, we analyze
the features of such a mixture when exponentially many instantiations of it are provided. As
the reader may intuit, when such a mixture is asked to provide exponentially many samples,
these will show features of scope poly(log n). This is simply a statement about the paucity of
independent parameters in the component distributions in the mixture.
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7.5 Separation

The property of the ENSP that allows us to analyze the behavior of mixtures is that it is spec-
ified by local Gibbs potentials on its cliques. In other words, a variable interacts with the rest
of the model only through the cliques that it is part of. These cliques are parametrized by po-
tentials. We may think of the cliques as the building blocks of each ENSP. The cliques are also
upper bounded in size by poly(log n). Furthermore, a vertex may be in at most O(log n) such
cliques. Therefore, a vertex displays collective behavior only of range poly(log n). Thus, the
mixture comprises distributions that can be parametrized by a subspace of Rpoly(logn), in con-
trast to requiring the larger space RO(n). This means that when exponentially many solutions
are generated, the features in the mixture will be of size poly(log n), not of size O(n).

This explains why polynomial time algorithms fail when interactions between variable are
O(n) at a time, without the possibility of factoring into smaller pieces through conditional inde-
pendencies. This also puts on rigorous ground the empirical observation that even NP-complete
problems are easy in large regimes, and become hard only when the densities of constraints in-
crease above a certain threshold. This threshold is precisely the value where O(n) interactions
first appear in almost all randomly constructed instances.

In case of random k-SAT in the d1RSB phase, these irreducible O(n) interactions manifest
through the appearance of cores which comprise clauses whose variables are coupled so tightly
that one has to assign them “simultaneously.” Cores arise when a set of C = O(n) clauses have
all their variables also lying in a set of size C. Once clause density is sufficiently high, cores can-
not be assigned poly(log n) at a time, and successive such assignments chained together through
conditional independencies. Since cores do not factor through conditional independencies, this
makes it impossible for polynomial time algorithms to assign their variables correctly. Intu-
itively, variables in a core are so tightly coupled together that they can only vary jointly, without
any conditional independencies between subsets. In other words, they represent irreducible in-
teractions of size O(n) which may not be factored any further. In such cases, parametrization
over cliques of size only poly(log n) is insufficient to specify the joint distribution.

However, we have shown that in the ENSP model, the size of the largest such irreducible
interactions are poly(log n), not O(n). Furthermore, since the model is directed, it guarantees us
conditional independencies at the level of its largest interactions. More precisely, it guarantees
us that there will exist conditional independencies in sets of size larger than the largest cliques
in its moral graph, which are O(poly(log n)). In other words, there will be independent vari-
ation within cores when conditioned upon values of intermediate variables that also lie within
the core, should the core factorize as per the ENSP. This is illustrated in Fig. 7.2. This is contra-
dictory to the known behaviour of cores for sufficiently high values of k and clause density in
the d1RSB phase. In other words, while the space of solutions generated by LFP has features of
size poly(log n), the features present in cores in the d1RSB phase have size O(n).

The framework we have constructed allows us to analyze the set of polynomial time algo-
rithms simultaneously, since they can all be captured by some LFP, instead of dealing with
each individual algorithm separately. It makes precise the notion that polynomial time algo-
rithms can take into account only interactions between variables that grow as poly(log n),
not as O(n).

At this point, we are ready to state our main theorem.

Theorem 7.7. P 6= NP.

Proof. Consider the solution space of k-SAT in the d1RSB phase for k > 8 as recalled in Section.5.2.1.
We know that for high enough values of the clause density α, we have O(n) frozen variables
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Figure 7.2: The factorization within a core due to potentials of size poly(log n).

in almost all of the exponentially many clusters. Let us consider the situation where these clus-
ters were generated by a purported LFP algorithm for k-SAT. However, when exponentially
many solutions have been generated from distributions having the parametrization of the ENSP
model, we will see the effect of conditional independencies beyond range poly(log n). Let αβγ
be a representation of the variables in cliques α, β and γ, then given a value of β, we will see
independent variation over all their possible conditional values in the variables of α and γ. If
each set of such variables has scope at most poly(log n), then this means that once more than
cpoly(logn), c > 1 many distinct solutions are generated, we have non-trivial conditional distri-
butions conditioned upon values of β variables (this factor accounts for the possible orderings
within the poly(logn) variables as well). At this point, the conditional independence ensure
that we will see cross terms of the form

α1βγ1 α2βγ2 α1βγ2 α2βγ1.

Note that since O(n) variables have to be changed when jumping from one cluster to another,
we may even chose our poly(log n) blocks to be in overlaps of these variables. This would
mean that with a poly(log n) change in frozen variables of one cluster, we would get a solution
in another cluster. But we know that in the highly constrained phases of d1RSB, we need O(n)
variable flips to get from one cluster to the next. This gives us the contradiction that we seek. �

The basic question in analyzing such mixtures is: How many variables do we need to condi-
tion upon in order to split the distribution into conditionally independent pieces? The answer
is given by (a) the size of the largest cliques and (b) the number of such cliques that a single
variable can occur in. In our case, these two give us a poly(log n) quantity. When exponen-
tially many solutions have been generated, there will be conditional distributions that exhibit
conditional independence between blocks of variates size poly(log n). Namely, there will be no
effect of the values of one upon those of the other. This is what prevents the Hamming distance
between solutions from being O(n). This is shown pictorially in Fig. 7.2.

We may think of such mixtures as possessing only cpoly(logn) “channels” to communicate di-
rectly with other variables. All long range correlations transmitted in such a distribution must
pass through only these many channels. Therefore, exponentially many solutions cannot in-
dependently transmit O(n) correlations (namely, the variables that have to be changed when
jumping from one cluster to another). Their correlations must factor through this bottleneck,
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which gives us conditional independences after range poly(log n). This means that blocks of
size larger than this are now varying independently of each other conditioned upon some inter-
mediate variables. This gives us the cross-terms described earlier, and prevents the Hamming
distance from being O(n) on the average over exponentially many solutions. Instead, it must
be poly(log n).

We can see that due to the limited parameter space that determines each variable, it can
only display a limited behavior. This behavior is completely determined by poly(log n) other
variates, not by O(n) other variates. Thus, the “jointness” in this distribution lies at a level
poly(log n). This is why when enough solutions have been generated by the LFP, the resulting
distribution will start showing features that are at most of size poly(log n). In other words, there
will be solutions that show cross-terms between features whose size is poly(log n).

We collect some observations in the following.

Remark 7.8. The poly(log n) size of features and therefore Hamming distance between solutions
tells us that polynomial time algorithms correspond to the RS phase of the 1RSB picture, not to
the d1RSB phase.

Remark 7.9. We can see from the preceding discussion that the number of independent param-
eters required to specify the distribution of the entire solution space in the d1RSB phase (for
k > 8) rises as cn, c > 1. This is because it takes that many parameters to specify the expo-
nentially many O(n) variable “jumps” between the clusters. These jumps are independent, and
cannot be factored through poly(log n) sized factors since that would mean conditional inde-
pendence of pieces of size poly(log n) and would ensure that the Hamming distance between
solutions was of that order.

Remark 7.10. Note that the central notion is that of the number of independent parameters,
not frozen variables. For example, frozen variables would occur even in low dimensional
parametrizations in the presence of additional constraints placed by the problem. This is what
happens in XORSAT, where the linearity of the problem causes frozen variables to occur. The
frozen variables in XORSAT do not arise due to a high dimensional parameterization, but sim-
ply because the 2-core percolates [MM09, §18.3]. Each cluster is a linear space tagged on to a
solution for the 2-core, which is also why the clusters are all of the same size. Linear spaces
always admit a simple description as the linear span of a basis, which takes the order of log of
the size of the space.

Remark 7.11. It is tempting to think that there will be such a parametrization whenever the
algorithmic procedure used to generate the solutions is stage-wise local. This is not so. We need
the added requirement that “mistakes” are not allowed. Namely, we cannot change a decision
that has been made. Otherwise, even PFP has the stage-wise bounded local property, but it can
give rise to distributions without any conditional independence factorizations whose factors
are of size poly(log n). When placed in the ENSP, we see that there is factorization, but over
an exponentially larger space, where clique sizes are of exponential size. One might observe
that the requirement that we not make any trial and error at all that limits LFP computations
in a fundamentally different manner than the locality of information flows. See [Put65] for an
interesting related notion of “trial and error predicates” in computability theory.

7.6 Some Perspectives

The following perspectives are reinforced by this work.

1. The most natural object of study for constraint satisfaction problems is the entire space
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of solutions. It is this space where the dependencies and independencies that the CSP
imposes upon covariates that satisfy it manifest.

2. There is an intimate relation between the geometry of the space and its parametrization.
Studying the parametrization of the space of solutions is a worthwhile pursuit.

3. The view that an algorithm is a means to generate one solution is limited in the sense
that it is oblivious to the geometry of the space of all solutions. It may, of course, be the
appropriate approach in many applications. But there are applications where requiring
algorithms to generate numerous solutions and approximate with increasing accuracy the
entire space of solutions seems more natural.

4. Conditional independence over factors of small scope is at the heart of resolving CSPs
by means of polynomial time algorithms. In other words, polynomial time algorithms
succeed by successively “breaking up” the problem into smaller subproblems that are
joined to each other through conditional independence. Consequently, polynomial time
algorithms cannot solve problems in regimes where blocks whose order is the same as the
underlying problem instance require simultaneous resolution.

5. Polynomial time algorithms resolve the variables in CSPs in a certain order, and with a
certain structure. This structure is important in their study. In order to bring this structure
under study, we may have to embed the space of covariates into a larger space (as done
by the ENSP).
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A. Reduction to a Single LFP
Operation

A.1 The Transitivity Theorem for LFP

We now gather a few results that will enable us to cast any LFP into one having just one appli-
cation of the LFP operator. Since we use this construction to deal with complex fixed points, we
reproduce it in this appendix. The presentation here closely follows [EF06, Ch. 8].

The first result, known as the transitivity theorem, tells us that nested fixed points can al-
ways be replaced by simultaneous fixed points. Let ϕ(x, X, Y ) and ψ(y, X, Y ) be first order for-
mulas positive inX and Y . Moreover, assume that no individual variable free in LFPy,Y ψ(y, X, Y )
gets into the scope of a corresponding quantifier or LFP operator in A.1.

[LFPx,Xϕ(x, X, [LFPy,Y ψ(y, X, Y )])]t (A.1)

Then A.1 is equivalent to a formula of the form

∃(∀)u[LFPz,Z,χ(z, Z)]u,

where χ is first order.

A.2 Sections and the Simultaneous Induction Lemma for LFP

Next we deal with simultaneous fixed points. Recall that simultaneous inductions do not in-
crease the expressive power of LFP. The proof utilizes a coding procedure whereby each simul-
taneous induction is embedded as a section in a single LFP operation of higher arity. First, we
introduce the notion of a section.

Definition A.1. Let R be a relation of arity (k + l) on A and a ∈ Ak. Then the a-section of R,
denoted by Ra, is given by

Ra := {b ∈ Ak|R(ba)}

Next we see how sections can be used to encode multiple simultaneous operators produc-
ing relations of lower arity into a single operator producing a relation of higher arity. Let m
operators F1, . . . , Fm act as follows:

F1 : (Ak1)× · · · × (Akm)→ (Ak1)

F2 : (Ak1)× · · · × (Akm)→ (Ak2)

...

Fm : (Ak1)× · · · × (Akm)→ (Akm)

(A.2)
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We wish to embed these operators as sections of a “larger” operator, which is known as their
simultaneous join.

We will denote a tuple consisting only of a’s by ã. The length of ã be clear from context.

Definition A.2. Let F1, . . . , Fm be operators acting as above. Set

k := max{k1, . . . , km}+m+ 1.

The simultaneous join of F1, . . . , Fm, denoted by J(F1, . . . , Fm), is an operator acting as

J(F1, . . . , Fm) : (Ak)→ (Ak)

such that for any a, b ∈ A, the ãbi-section (where the length of ã here is k− i+1) of the nth power
of J is the nth power of the operator Fi. Concretely, the simultaneous join is given by

J(R) :=
⋃

a,b∈A,a6=b

((F1(Rãb1 , . . . , Rãbm)× {ãb1}) ∪ · · ·

· · · ∪ (Fm(Rãb1 , . . . , Rãbm)× {ãbm})). (A.3)

The simultaneous join operator defined above has properties we will need to use. These are
collected below.

Lemma A.3. The ith power J i of the simultaneous join operator satisfies

J i =
⋃

a,b∈A,a6=b

((F i1 × {ãb1}) ∪ · · · ∪ (F im × {ãbm})). (A.4)

The following corollaries are now immediate.

Corollary A.4. The fixed point J∞ of the simultaneous join of operators (F1, . . . , Fm) exists if and only
if their simultaneous fixed point (F∞1 , . . . , F∞m ) exists.

Corollary A.5. The simultaneous join of inductive operators is inductive.

Finally, we need to show that the simultaneous join can itself be expressed as a LFP compu-
tation. We need formulas that will help us define sections of a simultaneous induction. Since the
sections are coded using tuples of the form ak−i+ki+1bi, we will need formulas that can express
this.

Definition A.6. For ` ≥ 1 and i = 1, . . . , `, the section formulas δli(x1, . . . , xl, v, w)

δli(x1, . . . , xl, v, w) :=


¬(v = w) ∧ (x1 = · · · = x` = v) i = 1

¬(v = w) ∧ (x1 = · · · = x`−i+1 = v) ∧
(x`−i+2 = · · · = w) i > 1.

(A.5)

For distinct a, b ∈ A, A |= δi[ãb
jab] if and only if i = j.

Now we are ready to show that simultaneous fixed-point inductions of formulas can be
replaced by the fixed point induction of a single formula.

Definition A.7. Let
ϕ1(R1, . . . , Rm,x1), . . . , ϕm(R1, . . . , Rm,xm)
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be formulas of LFP. As always, we let Ri be a ki-ary relation and xi be a ki-tuple. Furthermore,
let ϕ1, . . . , ϕm be positive in R1, . . . , Rm. Set k := max{k1, . . . , km} + m + 1. Define a new first
order formula χJ having k variables and computing a single k-ary relation Z by

χJ(Z, z1, . . . , zk) := ∃v∃w(¬v = w∧
((ϕ1(Zṽw1 , . . . , Zṽwm , z1, . . . , zk) ∧ δk1 (z1, . . . , zk, v, w))

∨ (ϕ2(Zṽw1 , . . . , Zṽwm , z1, . . . , zk) ∧ δk2 (z1, . . . , zk, v, w))

...

∨ (ϕm(Zṽw1 , . . . , Zṽwm , z1, . . . , zk) ∧ δkm(z1, . . . , zk, v, w)))) (A.6)

Then, the relation computed by the least fixed point of χJ contains all the individual least
fixed points computed by the simultaneous induction as its sections.
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