
The Unity Rendering Pipeline

Kuba Cupisz

Texthttp://is.gd/RenderingPipeline_UniteAsia13

Who am I?

• Kuba

• graphics programmer

• at Unity for... quite.some.time

• worked on small game projects before

Topics
What Unity is good/bad at
Built-in shaders
Shader combinations
Per material keywords
Lit shader replace
Endless runner with light probes
DX 11
 Tessellation
 Random writes
 Volume textures

What is Unity good at

• Very flexible rendering pipeline

• vertex lit / forward / deferred

• custom shaders

• custom lighting models

• completely customizable

What is Unity bad at

• Very flexible rendering pipeline

• di!cult to configure (so.many.options)

• Some parts are better maintained then others

• dual lightmaps in forward

• Default settings do not suit all projects

• very general, scale from mobile to high end

• aim your configuration at your target

Built-in shaders - good for

• Work with all rendering configurations

• forward / deferred, realtime lighting / lightmaps

• Support standard lighting models

• lambert / blinn-phong

• Work on all platforms

Built-in shaders - not good for

• Stylized games

• only provide ‘standard’ lighting models

• Super-performance

• if you know how your game will look, you can write more specific (faster) shaders

• Size

• always have many shader variants due to supporting many possible configurations

When to write your own?

• When the built-in shaders

• are not custom enough

• are not fast enough - don’t assume, profile!

• you know exactly how you want your game to be rendered

Shader combinations

• Compile variants of your shader

• to do di"erent things based on keywords

• shader keywords are set globally

• can be overridden per material

Shader combinations

• Each line declares a set of defines

• only one per line can be active at a time

• Make sure you enable one, otherwise Unity will pick one for you

Shader combinations
#pragma multi_compile AAA BBB

• two variants

• one where AAA is defined

• another where BBB is defined (and AAA is not)

Shader combinations
#pragma multi_compile AAA BBB

#pragma multi_compile CCC

• two variants

• AAA CCC

• BBB CCC

Shader combinations
#pragma multi_compile AAA BBB

#pragma multi_compile CCC DDD

• four variants

• AAA CCC

• BBB CCC

• AAA DDD

• BBB DDD

Per material keywords

• Shader keywords property on a material

• array of strings

• each string a keyword

• Write a custom editor to make it easy to use

Material inspector

• Extend the MaterialEditor class

• Override OnInspectorGUI()

• remember to call base.OnInspectorGUI() !

Shader combinations example

• Surface shader

• 2 defines

• 1 for darken blend mode

• 1 for di!erence blend mode

• configured via material inspector

Shader combinations

• Applications

• switch the shaders in your scene via a keyword

• completely change the look of your game

• in the future

• one shader for: di"use, specular, normal maps, etc.

Shader replace

• Objects normally get rendered with whatever material /shader is configured on
them

• Using shader replace you can swap out the shader

• still uses same material (so textures / properties will be the same as in the original
rendering)

• Sub-shader is selected based on tag-matching

Shader replace - Tags

• When setting a replacement shader, you can set the tag

• Camera.SetReplacementShader (Shader s, string tag)

• Camera.RenderWithShader (Shader s, string tag)

Shader replace - Tags

• No tag specified?

• all objects will be rendered with the replacement shader

• uses the first subshader of the replacement shader

Shader replace - Tags

• Tag set?

• the real object’s shader is queried for the tag value

• no matching tag?

• not rendered

• tag found?

• subshader from the replacement shader selected which matches the tag

Tags

• Builtin, e.g. RenderType:

• Opaque

• Transparent

• TransparentCutout

• etc.

• Custom

• whatever you want!

Lit-Shader replacement

• New in Unity 4.1

• Useful for

• scene view enhancement

• special e"ects

• How does it work?

• just like normal shader replace!

• but you can use shaders that have lighting passes (surface shaders!)

Endless runner with light probes

• The track is assembled from blocks

• Any block can be matched with any other block

• It’s not feasible to bake light probes for all the combinations of block setups

Endless runner with light probes

• Bake light probes for each block separately

• After baking, light probes are tetrahedralized

• When the player moves from one block to the other you want to switch to light
probes for the new block

• set Lightmapping.lightProbes

Smooth transition

• Just switching from one light probe set to another will give a pop

• Solution:

• make sure that start and end light probe positions have the same layout

• when loading the new probes, set the start probes in the new set to the end probes of the
previous set

Smooth transition

• Transition distance

• add another set of light probes relatively closely to the start probes to control the
transition distance

Baked data is not movable

• Loaded light probes will show up at the positions where they were baked

• in our case the blocks’ pivots are at (0,0,0)

• If you’d use player’s position to sample light probes you’d sample outside of the
volume defined by the probes -- not good

Baked data is not movable

• Luckily you can set lightProbeAnchor on the renderer to a transform of choice

• Parent the transform under the player

• Set local o"set to -currentBlocksO"set on block change

DX 11

• Gives you more flexibility

• Allows for techniques that were impossible to do on the GPU before and not
feasible on the CPU

Tessellation

• What is tessellation

• subdivision of geometry

• adds more triangles

• by default in the same plane as the original triangle, so doesn’t add more detail yet

Tessellation

• To get more detail, tessellate and:

• displace by sampling a displacement texture, or

• use Phong tessellation

• inflates the geometry and smooths the silhouette

Tessellation with surface shaders

• Use tessellate:FunctionName modifier in the surface shader declaration

• float FunctionName () { return tessAmount; }

• built-in

• UnityDistanceBasedTess

• tessellate more close to the camera

• UnityEdgeLengthBasedTess

• tessellate big triangles more

Random writes

• Unordered Access View

• for RenderTextures or ComputeBu"ers

• allows writing at any position within the bu"er

Random writes

• RenderTexture

• generally stores colors

• bajilion di"erent formats

• ARGB32, ARGBHalf, ARGBFloat, R(8|Half|Float), etc.

Random writes

• ComputeBu"er (StructuredBu"er in DX11)

• stores structs or simple types

• could be color, of course

• int, float, you name it

Random writes

• Create a ComputeBu"er from script

• provide the count and the stride (size of one element in bytes)

• Initialize the contents using SetData()

• Set the bu"er for a material using SetBu"er()

Random writes

• In the shader declare the bu"er as

• StructuredBu"er<your_data_type>

• random reads

• RWStructuredBu"er<your_data_type>

• random reads and writes

Random writes example

• Image analysis

• run a shader on the scene render

• analyze each pixel and write to an output bu"er at a location of your choice

• you can also atomically increment the value

• InterlockedAdd()

• requires a bu"er of ints or uints though

Volume textures

• You know how textures are normally in 2D?!

• Now they are in 3D!

• BOOM

Volume textures

• How does DX 11 come into play?

• you can fill the volume texture from a compute shader really quickly (do it each frame?)

Volume textures example

• Fills in the volume texture based on dispatch thread ID*

• combined thread and thread group index

* Read up on semantics on MSDN

http://msdn.microsoft.com/en-us/library/windows/desktop/ff471566(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff471566(v=vs.85).aspx

Questions?

• Kuba @kubacupisz

Appendix

Multiple render targets

• In the shader do:

• void frag(v2f i, out float4 Colour0 : COLOR0, out float4 Colour1 : COLOR1) or

• make the pixel shader return a color array or

• make the pixel shader return a struct with COLOR0...COLORn semantics

Multiple render targets

• In the script do: (javascript)
// rt1, rt2, rt3, rt4 are RenderTextures

// create an array of color bu"ers
var mrt4 : RenderBu"er[] = [rt1.colorBu"er, rt2.colorBu"er, rt3.colorBu"er, rt4.colorBu"er];

// set those color bu"ers and the depth bu"er from the first render texture as the current target
Graphics.SetRenderTarget (mrt4, rt1.depthBu"er);

// draw your stu"!
[...]

