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Fetch these slides

https://is.gd/OpaqueTypesInfinity or
http://nocandysw.com/opaque-types-to-infinity.pdf
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About me

Those slide URLs again: https://is.gd/0OpaqueTypesInfinity or
http://nocandysw.com/opaque-types-to-infinity.pdf

o | like types
@ Scalaz contributor since 2012
e Contributor to Typelevel.scala blog since 2013

@ Working at Digital Asset

o distributed ledger technology (blockchain)

o typed functional smart contract language in Scala and Haskell
(daml.com)

o Come join us! digitalasset.com/careers
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Coercible newtypes

Goals of newtypes

opaque type Label = String

o like alias, same runtime representation as RHS (right-hand side) of =
@ unlike alias, treated as distinct type at compile-time

@ coercible: compiler-enforced abstraction without
wrapping/unwrapping of individual values
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Coercible newtypes

Original inspiration

Julian Michael, mail to scala-user, 19 August 2016,
https://is.gd/LowerCaseString

Hi all,

I might be exploring a well-worn field, but I'll share my whole
Jjourney below anyway and list some questions at the end.

It seems to me that you can use abstract types to do opaque sealing

to make a type alias that represents a subtype corresponding to an
property—say, being in the range of _ . toLowerCase.

The ML family of programming languages has all the answers.
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Coercible newtypes

Step 1: declare signature

// The SIGNATURE

sealed abstract class LabelModule {
type Label
// Put the public *interface* here
def apply(s: String): Label
def unwrap(l: Label): String
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Coercible newtypes

Step 2: define structure, assign to global val

// The global VAL
// its singleton type is a "lookup key" to find the real type
val Instance: LabelModule =
// The STRUCTURE
new LabelModule {
type Label = String
// Put the private *implementation* here
override def apply(s: String): Label = s
override def unwrap(l: Label): String =1
}
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Coercible newtypes

Label is an “existential type”

import labell.LabelModule.Instance
type Label = Instance.Label

scala> "hi": Label
error: type mismatch;
found String([bim)
required: Label
(which expands to) labell.LabelModule.Instance.Label

scala> Instance.apply("hi"): String

error: type mismatch;

found : labell.LabelModule.Instance.Label
required: String
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Coercible newtypes

Who said it was a reference type?

scala> null: Label
error: type mismatch;
found : Null(null)
required: Label
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Coercible newtypes

The existential can be “copied”

val Instance2: LabelModule = Instance

Instance.Label and Instance2.Label are incompatible types.
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Coercible newtypes

Two rules to remember

© What is in the signature (abstract class or trait) will be seen by
outside code, what is in the structure (new) will not; that's why the
type's RHS only occurs in latter.

@ Always ascribe the vall If you don't, you'll break the abstraction by
revealing the type's RHS.
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Coercible newtypes

How to map a list in O(1)

// add declaration to stignature,
// implementation to structure
def wrapList(xs: List[Stringl): List[Label] = xs

scala> Instance.wrapList(List("hi", "there"))

res3: List[labell.LabelModule.Instance.Label]
= List(hi, there)
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How to map unmappable things in O(1)

def subst([F[_]](fs: F[String]): F[Label] = fs

// defined in signature; subst ts its own inverse
def unsubst[F[_]1](f1l: F[Labell]): F[String] = {
type K[A] = F[A] => F[String]
subst [K] (identity) (f1)
}

scala> Instance.subst[List] (List("hi", "there"))
res4d: List[labell.LabelModule.Instance.Label]
= List(hi, there)
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Coercible newtypes

subst is proof of type equality

But it only arises when you ask for it.

implicit val labelMonoid: Monoid[Label] =
Instance.subst (Monoid[String])

No other code, not even the implementation of Monoid[String], knows
that Label = String.
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But. . . subst is proof of type equality

What if you don't want to reveal that fact in your signature?
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The subtyping path to object-oriented incoherence

Suddenly, | care about the conformance relation

In the signature,
// Label autowidens to String
type Label <: String

// String autowidens to Label
type Label >: String

// or use both!
type Label >: String <: CharSequence

These tend to be called translucent newtypes.
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The subtyping path to object-oriented incoherence

Translucency has serious implications

type Label >: String // in the signature...

scala> val 1lbls = List("hi", "there"): List[Label]

1bls: List[translucentlabel.LabelModule.Instance.Label]
= List(hi, there)
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The subtyping path to object-oriented incoherence

You've never had more power to construct imaginary lattices

sealed abstract class LanguagesModule {
type Language <: String
type Functional <: Language
type WellTyped <: Language
type SinglyTyped <: Language
type TheScalazDream >: Scala.type with Haskell.type
val Scala: Functional with WellTyped
val Haskell: Functional with WellTyped
val JavaScript: SinglyTyped
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The cost of subtyping is inheritance

If | write

type Label <: String

@ No way to add a Label-specific reverse method

e No way to add any other method name String already uses

If this is a problem, you must change or remove your upper bound.
(Lower >: bounds are not subject to this problem.)

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 19/35



The subtyping path to object-oriented incoherence

An incoherent instance

sealed abstract class DualModule {
type Dual[+A] <: A
def apply[A](a: A): Duall[A]

+

val Instance: DualModule = new DualModule {
type Dual[+A] = A
override def apply[A]l(a: A) = a

}

import Instance.Dual
implicit def dualSemigroup[A] (implicit A: Semigroup[A])
: Semigroup[Dual[A]] =
Semigroup instance ((1, r) => Instance(A.append(r, 1)))
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The subtyping path to object-oriented incoherence

Subtyping is incompatible with disagreeing instances

Or, makes those instances incoherent.

import scalaz.syntax.semigroup._, scalaz.std.string._
val h = Instance("hello")
val w = Instance("world")

scala> h [+| w: String
res2: String = worldhello

scala> (h: String) |+| w
res3: String = helloworld
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The subtyping path to object-oriented incoherence

Avoiding autowidening without proving equality

You can prove conformance (is subtype of) instead, in a very subst-like
way.

def substCo[F[+_]](f1l: F[Label]): F[String]

// still in the signature

def substContralF[-_]](fs: F[String]): F[Label] = {
type K[+A] = F[A] => F[Label]
substCo [K] (identity) (fs)

}

This hints that variance is at the heart of subtyping.
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Let's avoid subtyping instead

Allows only one-way conversion with maximum O(1) support, and no
autowidening or variance declarations required.

type Label // still in the signature

def substCo[F[_]: Functor] (f1: F[Label]): F[String] = {
type K[A] = F[A] => F[String]
implicit val K = Contravariant[? => F[Stringl].icompose[F]
substContra[K] (identity) .apply (f1)

}

def substContralF[_]: Contravariant] (fs: F[String])
: F[Label]
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The functorial path back to coherence

Richer constraints for new features

Validating traversal without reallocating:

def validate[F[_]: Foldable] (fs: F[String])
: Option[F[Labell] =
if (fs.all(_ == "42")) Some(fs) else None
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Infinite types

A list is an infinite tower of optional tuples

// Option[(4, Option[(A, Option[(4, ...)])]1)]
type XList[+A] = Option[(A, XList[A])]
// illegal cyclic reference "~ involving type XList

final case class XList[+A] (uncons: Option[(A, XList[A])])
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Infinite types

It's really a list

def fromList[A] (xs: List[A]): Instance.XList[A] =
xs.foldRight (Instance[A] (None)){
(x, xs) => Instance(Some((x, xs)))

}

scala> fromList(List(1, 2, 3))
res0: xlist.XListModule.Instance.XList[Int]
= Some ((1,Some((2,Some((3,None))))))

Scalaz 8 List is defined this way, more or less:
https://github.com/scalaz/scalaz/pull/1455
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Infinite types

The recursion makes this tricky

@ XList must appear in its own definition to be correct
@ But, no code can see this self-recursion happening

e not the signature
e not the binding to val
e not even the structure!
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Infinite types

The solution: use the val

sealed abstract class XListModule {
type XList[+A]
def apply[A] (one: Option[(A, Instance.XList[A])]): XList[A]
def uncons[A] (x1: XList[A]): Option[(A, Instance.XList[A])]
}

val Instance: XListModule = new XListModule {
type XList[+A] = Option[(A, Instance.XList[A])]
def applyl[A] (one: XList[A]): XList[A] = one
def uncons[A] (x1: XList[A]): XList[A] = x1

}
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Infinite types

Completing the circle

@ structure implements signature
@ val is initialized by structure

© signature uses val in declarations
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Infinite types

The flow of types into Instance

val Instance: XListModule = new XListModule {
// 3 2 1

@ Structure is created; knows RHS of XList, but not that its XList will
become Instance.XList
@ Ascription :  XListModule existentializes XList, hiding RHS

© Instance is set as the stable path to the existential XList, forming
the global existential type Instance.XList
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Can you do this in Java?

Sure, just put your whole program inside a single generic method.
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Other matters I'm ignoring

Primitives and boxing

This can be interesting, but programmers who hear about it fall in the
tarpit and forget the main reason for thinking about this in the first place,
improving abstraction.
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Other matters I'm ignoring

Intersection-style newtypes

You can write a no-cast structure for this signature.

type ExtralT]

def addExtralA, T](a: A): A with ExtralT]
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SIP-35 Opaque types

e Cool, but...
@ This works today (and has for several years)

@ No way to do most of what I've shown in this talk

o Same goes for newtype macro libraries
e Same goes for type tags in libraries
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References

References

@ This presentation source and example code,
https://launchpad.net/opaque-types-to-infinity

@ Julian Michael’s original email, https://is.gd/LowerCaseString

@ Article on related techniques, “...and the glorious subst to come”,
https://is.gd/GloriousSubst

@ “Liskov Substitution Principle is Contravariance”,
https://is.gd/Z48ext

@ Set scalac option -Xsource:2.13 if having trouble with implicits:
https://github.com/scala/scala/pull/6074

Copyright (©)2018 Stephen Compall. This work is licensed under the
Creative Commons Attribution 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/
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