Opaque Types To Infinity

Stephen Compall

2018-06-04 Mon

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 1/35

Fetch these slides

https://is.gd/OpaqueTypesInfinity or
http://nocandysw.com/opaque-types-to-infinity.pdf

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 2/35

About me

Those slide URLs again: https://is.gd/0OpaqueTypesInfinity or
http://nocandysw.com/opaque-types-to-infinity.pdf

o | like types
@ Scalaz contributor since 2012
e Contributor to Typelevel.scala blog since 2013

@ Working at Digital Asset

o distributed ledger technology (blockchain)

o typed functional smart contract language in Scala and Haskell
(daml.com)

o Come join us! digitalasset.com/careers

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 3/35

Coercible newtypes

Goals of newtypes

opaque type Label = String

o like alias, same runtime representation as RHS (right-hand side) of =
@ unlike alias, treated as distinct type at compile-time

@ coercible: compiler-enforced abstraction without
wrapping/unwrapping of individual values

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 4/35

Coercible newtypes

Original inspiration

Julian Michael, mail to scala-user, 19 August 2016,
https://is.gd/LowerCaseString

Hi all,

I might be exploring a well-worn field, but I'll share my whole
Jjourney below anyway and list some questions at the end.

It seems to me that you can use abstract types to do opaque sealing

to make a type alias that represents a subtype corresponding to an
property—say, being in the range of _ . toLowerCase.

The ML family of programming languages has all the answers.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 5/35

Coercible newtypes

Step 1: declare signature

// The SIGNATURE

sealed abstract class LabelModule {
type Label
// Put the public *interface* here
def apply(s: String): Label
def unwrap(l: Label): String

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 6 /35

Coercible newtypes

Step 2: define structure, assign to global val

// The global VAL
// its singleton type is a "lookup key" to find the real type
val Instance: LabelModule =
// The STRUCTURE
new LabelModule {
type Label = String
// Put the private *implementation* here
override def apply(s: String): Label = s
override def unwrap(l: Label): String =1
}

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 7/35

Coercible newtypes

Label is an “existential type”

import labell.LabelModule.Instance
type Label = Instance.Label

scala> "hi": Label
error: type mismatch;
found String([bim)
required: Label
(which expands to) labell.LabelModule.Instance.Label

scala> Instance.apply("hi"): String

error: type mismatch;

found : labell.LabelModule.Instance.Label
required: String

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 8/35

Coercible newtypes

Who said it was a reference type?

scala> null: Label
error: type mismatch;
found : Null(null)
required: Label

Stephen Compall Opaque Types To Infinity

2018-06-04 Mon

9/35

Coercible newtypes

The existential can be “copied”

val Instance2: LabelModule = Instance

Instance.Label and Instance2.Label are incompatible types.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 10/35

Coercible newtypes

Two rules to remember

© What is in the signature (abstract class or trait) will be seen by
outside code, what is in the structure (new) will not; that's why the
type's RHS only occurs in latter.

@ Always ascribe the vall If you don't, you'll break the abstraction by
revealing the type's RHS.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 11/35

Coercible newtypes

How to map a list in O(1)

// add declaration to stignature,
// implementation to structure
def wrapList(xs: List[Stringl): List[Label] = xs

scala> Instance.wrapList(List("hi", "there"))

res3: List[labell.LabelModule.Instance.Label]
= List(hi, there)

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 12/35

How to map unmappable things in O(1)

def subst([F[_]](fs: F[String]): F[Label] = fs

// defined in signature; subst ts its own inverse
def unsubst[F[_]1](f1l: F[Labell]): F[String] = {
type K[A] = F[A] => F[String]
subst [K] (identity) (f1)
}

scala> Instance.subst[List] (List("hi", "there"))
res4d: List[labell.LabelModule.Instance.Label]
= List(hi, there)

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 13/35

Coercible newtypes

subst is proof of type equality

But it only arises when you ask for it.

implicit val labelMonoid: Monoid[Label] =
Instance.subst (Monoid[String])

No other code, not even the implementation of Monoid[String], knows
that Label = String.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 14 /35

But. . . subst is proof of type equality

What if you don't want to reveal that fact in your signature?

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 15 /35

The subtyping path to object-oriented incoherence

Suddenly, | care about the conformance relation

In the signature,
// Label autowidens to String
type Label <: String

// String autowidens to Label
type Label >: String

// or use both!
type Label >: String <: CharSequence

These tend to be called translucent newtypes.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 16 /35

The subtyping path to object-oriented incoherence

Translucency has serious implications

type Label >: String // in the signature...

scala> val 1lbls = List("hi", "there"): List[Label]

1bls: List[translucentlabel.LabelModule.Instance.Label]
= List(hi, there)

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 17 /35

The subtyping path to object-oriented incoherence

You've never had more power to construct imaginary lattices

sealed abstract class LanguagesModule {
type Language <: String
type Functional <: Language
type WellTyped <: Language
type SinglyTyped <: Language
type TheScalazDream >: Scala.type with Haskell.type
val Scala: Functional with WellTyped
val Haskell: Functional with WellTyped
val JavaScript: SinglyTyped

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 18 /35

The cost of subtyping is inheritance

If | write

type Label <: String

@ No way to add a Label-specific reverse method

e No way to add any other method name String already uses

If this is a problem, you must change or remove your upper bound.
(Lower >: bounds are not subject to this problem.)

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 19/35

The subtyping path to object-oriented incoherence

An incoherent instance

sealed abstract class DualModule {
type Dual[+A] <: A
def apply[A](a: A): Duall[A]

+

val Instance: DualModule = new DualModule {
type Dual[+A] = A
override def apply[A]l(a: A) = a

}

import Instance.Dual
implicit def dualSemigroup[A] (implicit A: Semigroup[A])
: Semigroup[Dual[A]] =
Semigroup instance ((1, r) => Instance(A.append(r, 1)))

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 20 /35

The subtyping path to object-oriented incoherence

Subtyping is incompatible with disagreeing instances

Or, makes those instances incoherent.

import scalaz.syntax.semigroup._, scalaz.std.string._
val h = Instance("hello")
val w = Instance("world")

scala> h [+| w: String
res2: String = worldhello

scala> (h: String) |+| w
res3: String = helloworld

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 21/35

The subtyping path to object-oriented incoherence

Avoiding autowidening without proving equality

You can prove conformance (is subtype of) instead, in a very subst-like
way.

def substCo[F[+_]](f1l: F[Label]): F[String]

// still in the signature

def substContralF[-_]](fs: F[String]): F[Label] = {
type K[+A] = F[A] => F[Label]
substCo [K] (identity) (fs)

}

This hints that variance is at the heart of subtyping.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 22/35

Let's avoid subtyping instead

Allows only one-way conversion with maximum O(1) support, and no
autowidening or variance declarations required.

type Label // still in the signature

def substCo[F[_]: Functor] (f1: F[Label]): F[String] = {
type K[A] = F[A] => F[String]
implicit val K = Contravariant[? => F[Stringl].icompose[F]
substContra[K] (identity) .apply (f1)

}

def substContralF[_]: Contravariant] (fs: F[String])
: F[Label]

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 23 /35

The functorial path back to coherence

Richer constraints for new features

Validating traversal without reallocating:

def validate[F[_]: Foldable] (fs: F[String])
: Option[F[Labell] =
if (fs.all(_ == "42")) Some(fs) else None

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 24 /35

Infinite types

A list is an infinite tower of optional tuples

// Option[(4, Option[(A, Option[(4, ...)])]1)]
type XList[+A] = Option[(A, XList[A])]
// illegal cyclic reference "~ involving type XList

final case class XList[+A] (uncons: Option[(A, XList[A])])

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 25 /35

Infinite types

It's really a list

def fromList[A] (xs: List[A]): Instance.XList[A] =
xs.foldRight (Instance[A] (None)){
(x, xs) => Instance(Some((x, xs)))

}

scala> fromList(List(1, 2, 3))
res0: xlist.XListModule.Instance.XList[Int]
= Some ((1,Some((2,Some((3,None))))))

Scalaz 8 List is defined this way, more or less:
https://github.com/scalaz/scalaz/pull/1455

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 26 /35

Infinite types

The recursion makes this tricky

@ XList must appear in its own definition to be correct
@ But, no code can see this self-recursion happening

e not the signature
e not the binding to val
e not even the structure!

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 27 /35

Infinite types

The solution: use the val

sealed abstract class XListModule {
type XList[+A]
def apply[A] (one: Option[(A, Instance.XList[A])]): XList[A]
def uncons[A] (x1: XList[A]): Option[(A, Instance.XList[A])]
}

val Instance: XListModule = new XListModule {
type XList[+A] = Option[(A, Instance.XList[A])]
def applyl[A] (one: XList[A]): XList[A] = one
def uncons[A] (x1: XList[A]): XList[A] = x1

}

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 28 /35

Infinite types

Completing the circle

@ structure implements signature
@ val is initialized by structure

© signature uses val in declarations

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon

29/35

Infinite types

The flow of types into Instance

val Instance: XListModule = new XListModule {
// 3 2 1

@ Structure is created; knows RHS of XList, but not that its XList will
become Instance.XList
@ Ascription : XListModule existentializes XList, hiding RHS

© Instance is set as the stable path to the existential XList, forming
the global existential type Instance.XList

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 30/35

Can you do this in Java?

Sure, just put your whole program inside a single generic method.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 31/35

Other matters I'm ignoring

Primitives and boxing

This can be interesting, but programmers who hear about it fall in the
tarpit and forget the main reason for thinking about this in the first place,
improving abstraction.

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 32/35

Other matters I'm ignoring

Intersection-style newtypes

You can write a no-cast structure for this signature.

type ExtralT]

def addExtralA, T](a: A): A with ExtralT]

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 33/35

SIP-35 Opaque types

e Cool, but...
@ This works today (and has for several years)

@ No way to do most of what I've shown in this talk

o Same goes for newtype macro libraries
e Same goes for type tags in libraries

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 34 /35

References

References

@ This presentation source and example code,
https://launchpad.net/opaque-types-to-infinity

@ Julian Michael’s original email, https://is.gd/LowerCaseString

@ Article on related techniques, “...and the glorious subst to come”,
https://is.gd/GloriousSubst

@ “Liskov Substitution Principle is Contravariance”,
https://is.gd/Z48ext

@ Set scalac option -Xsource:2.13 if having trouble with implicits:
https://github.com/scala/scala/pull/6074

Copyright (©)2018 Stephen Compall. This work is licensed under the
Creative Commons Attribution 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/

Stephen Compall Opaque Types To Infinity 2018-06-04 Mon 35/35

http://creativecommons.org/licenses/by/4.0/

	Front matter
	Coercible newtypes
	The subtyping path to object-oriented incoherence
	The functorial path back to coherence
	Infinite types
	Other matters I'm ignoring
	References

