PLS Path Modeling
with R

Gaston Sanchez
WWW.gastonsanchez.com

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/by-nc-sa/3.0/ In short:
Gaston Sanchez retains the Copyright but you are free to reproduce, reblog, remix and modify the
content only under the same license to this one. You may not use this work for commercial purposes
but permission to use this material in nonprofit teaching is still granted, provided the authorship
and licensing information here is displayed.

http://www.gastonsanchez.com
http://creativecommons.org/licenses/by-nc-sa/3.0/

Citation

Sanchez, G. (2013) PLS Path Modeling with R
Trowchez Editions. Berkeley, 2013.
http://www.gastonsanchez.com/PLS Path Modeling with R.pdf

To Jessica

for her manifest love,
her latent support,

her outer energy,

and her inner strength.

I wish my college teachers would have taught many more things than the ones
they did. Preferably, I would have liked to be taught more computational courses
and programming classes. They taught me the basics but they missed one key
lesson that I learned years later with a blend of great disillusionment and enriching
experience: the important modeling should take place in the mind of the analyst,
not in the computer. Computers and software are indispensable but they can’t
make sense of data; only people who have developed the necessary data analysis
skills can. Whether it is PLS Path Modeling or any other type of modeling,
always remember this little-big advice.

My Model

Contents

Preface @ 0 i i i i e vii
1 Introduction @ i i i i i i e e e e e e e e e e e e e 3
1.1 PLS Path Modeling 3
1.2 Ropackage plspm o e 5
1.21 Why R? . . . o 5

1.3 About Partial Least Squares 6
1.3.1 Short taleof PLS 7

1.3.2 Regressionists and Path-modelists 7

1.4 Structure of the book o 8
1.0 Randplspm. o 0 e 9
1.5.1 Installing plspm L 11

1.5.2 Some Extra Details 12

1.6 Reading List L 13

2 Getting Started with PLS-PM 15
2.1 Case Study: Index of Success 0. 15
2.1.1 Of latent and manifest variables 16

2.1.2 Measuring Success, Attack and Defense 20

2.1.3 Path Model 21

2.1.4 Inner and Outer models 22

2.2 Applying PLS-PM with the R package plspm 23
2.2.1 Preparing the ingredients for plspm() 24

2.2.2 Running plspm() Lo 26

2.2.3 Plottingresultso 29

2.3 Reading List o 31

3 Setting the PLS-PM Framework, 33
3.1 PLS-PM Frame of Mind 33
3.2 PLS Path Modeling Specs 35
3.3 Formal Model: What we want oo 35
3.3.1 The Structural Model 36

3.3.2 The Measurement Model 37

3.3.3 The Weight Relations. 38

3.4 Operative Model: How to get what we want 39
3.4.1 Stage 1: Iterative Process 41
3.4.2 Stage 2: Path Coefficients 46
3.4.3 Stage 3: Loadingso 46
3.4.4 Wrapping upo 46

3.5 Reading List 47

Interpreting PLS-PM Results 0o, 49

4.1 Reminder of Our Success Index Model 50
41.1 PLS-PM withplspm, 20
4.1.2 The function plspm() 51

4.2 Handling PLS-PM results oo oL 54

4.3 Measurement Model Assessment:

Reflective Indicators 55
4.3.1 All for one and one forall 55
4.3.2 Unidimensionality of indicators 56
4.3.3 Loadings and Communalities 62
4.3.4 Cross-loadings Lo 64

4.4 Measurement Model Assessment:

Formative Indicators 67

4.5 Structural Model Assessment oL 67
4.5.1 Coefficients of determination R? 68
4.5.2 Redundancy 68
4.5.3 GoF . . . 69

4.6 Validation e 70
4.6.1 Bootstrapping Lo 70

4.7 Reading List o 72

Running a PLS-PM Analysis 75

5.1 Modeling Customer Satisfaction 75
51.1 ECSI Model 76
5.1.2 Case Study: Satisfaction in Education 7

5.2 Preliminary Exploration 0oL 81
5.2.1 Looking at thedata L. 82
5.2.2 Seeing the forest, not just the trees 84

53 PLS-PM Round 1 86

54 PLS-PM Round 2 e 90

55 PLS-PM Round 3 94
5.5.1 Checking unidimensionality 94
5.5.2 Loadings and Communalities 95

5.5.3 Path Coefficients 97

5.5.4 Structural Regressions L oL 99

5505 Effects 100
5.5.6 Inner Model Summary 0oL 103
5.5.7 GoF . .o 104
5.5.8 Bootstrap Validation 105
5.5.9 Inspecting scores of latent variables 108
5.6 Guidelines for a PLS-PM analysis, 111
5.7 Reading List 113
Comparing Groups . « v v ¢ v v v v v ot b vt v et o o e o e ot o e e 117
6.1 The million dollar question, 117
6.2 Group Comparison Approaches 119
6.2.1 Bootstrap t-test L 120
6.2.2 Permutation Procedure L. 121
6.2.3 Case Study: College GPA 122
6.2.4 PLS-PM Analysis: GPA Model 125
6.2.5 Female and Male Student Models 128
6.3 Comparing Groups: Bootstrap t-test 129
6.4 Comparing Groups: Permutation test 131
6.5 Reading List L 133
Moderating Effects i e 135
7.1 Moderator Variables 135
7.2 Moderating effects in PLS-PM o oo 136
7.2.1 Moderator variables as constructs Lo 137
7.2.2 Case Study: Simplified Customer Satisfaction 137
7.3 Product Indicator Approach Lo L0 138
7.3.1 Example 139
7.4 Two-Stage Path Modeling Approach 143
74.1 Exampleo 144
7.5 Two-Stage Regression Approach 147
7.5.1 Example 148
7.6 Categorical Variable Approach 151
7.6.1 Example 152
7.7 Reading List o 155
PLS Path Models with Higher-Order Constructs 157
8.1 Constructify-it: How to model higher-order
constructs? ... oL L e e e e 158
8.1.1 Two types of higher-order constructs 159
8.1.2 Modeling higher-order constructs in PLS-PM 160

8.1.3 Case Study: NFLdata 161

8.2 Repeated Indicators: The Poor Man’s Approach 164
8.2.1 Repeated Indicators example 165

8.3 Two-Step Option: The Patch Approach 167
8.3.1 Two-Stepexample Lo 167

8.4 Hybrid Option: The Give Away Approach 172
8.4.1 Hybrid Approach example 172

85 Wrapping Up e 173
8.6 Reading List 175
9 Detecting Classes with REBUS-PLS 177
9.1 Diversityin Data e 177
9.1.1 Unobserved Classes o v v v i vt ittt e 178

9.2 What is REBUS? e 179
9.2.1 The REBUS Approach 179
9.2.2 Case Study: Success Index Model 181
9.2.3 Global PLS Path Model 182

9.3 Applying REBUS 188
9.3.1 Local Models e 193
9.3.2 Quality of REBUS models 198
9.3.3 Final Comments 201

94 Reading List L 201
A Historical Overview of PLS-PM00, 205
1 Preliminaries 205
2 Herman Wold e 208
2.1 The Econometrician 209

2.2 The Least Squares Affair 210

2.3 The Philosopher of Science 213

3 Pre-PLS Era. 214
4 Soft Modeling 217
5 PLS-PM Related Timeline 218
6 Reading List 221

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

Preface

On a sunny September morning of 2005, Tomas Aluja —my PhD advisor— and I were
walking around the campus of the Universitat Politecnica de Catalunya in Barcelona. “So,
how did you like the symposium?” Tomas asked me. The week before we had hosted the
PLS’05 International Symposium on PLS and Related Methods. It was my first academic
conference ever and I had just been introduced to the PLS methods early that year. *“I
kind of liked it” I responded. “What was your favorite talk?”, Tomas said. “Well, I liked
this guy’s presentation and also the case study in that woman’s talk” I answered vaguely. I
was part of the staff and my role during the symposium was to be in charge of one of the
conference halls. In other words, I had to make sure that everything worked fine, the lights,
the projector, the microphone, the speakers’ banners. I barely had a chance to sit down and
listen carefully to the talks. You can’t blame me for not paying attention to the speakers;
after all, I was checking that all the small details were in place (which I diligently did).

Tomas paused, stared at me, and put all the cards on the table: “Would you be interested
in working on PLS?” I knew that a proposal like that from Tomas was a once-in-lifetime
opportunity that I couldn’t reject. “Yes, absolutely”, I responded. I was not exactly sure
if PLS was for me but I would figure that out later. “The plan is to make an R library to
calculate PLS path models. Then, we need to work on segmentation issues. You know, find
a way to detect segments and compare path models ...” Tomas continued describing the
general idea of the project, thinking out loud and mentioning some of the potential problems
that I would have to deal with. When he finished, all I said was “OK”(I'm not a very
talkative person). Oh boy, what an innocent grad student I was. To put that in perspective
is like if you were just start learning to climb, and then your instructor says: “Would you
be interested in Mount Everest? The plan is to climb mount Everest under the following
conditions: you need to climb it by its north face, during the winter season, in alpine style,
without Sherpas, with no oxygen supply, and open a new route that nobody else has climbed
before”. Anyone in their right mind would thought twice about it and even then would have
doubted the feasibility of the project. But I'm glad I didn’t know in advance what it would
take to climb “mount PLS”. I was going to climb it or die trying.

Fast-forward to July 2009. The seemingly utopian project my advisor proposed me, became
a reality. T’ll save the story of what happened in those four years for when I write my

X

memoirs. The important thing for this story was what happened on the day of my dissertation
defense. That evening, after successfully defending my climbing of mount PLS, I attended
the traditional dinner with Tomas, the members of the defense committee, and my invited
guests. At the end when it came the time to say goodbye, Professor Ludovic Lebart, a
member of my defense committee, approached me and strongly encouraged me to write a
textbook about Partial Least Squares Path Modeling as soon as possible. “Me? A book on
PLS Path Modeling? No way!”, I thought. At least not anytime soon. I smiled and told him
that I would think about it. Since I had just finished my PhD, I didn’t have the necessary
motivation and required stamina to write another manuscript. Besides, the Handbook of
Partial Least Squares was already being edited. The world didn’t need another book on
PLS. Or so I thought.

Life has this strange way of proving that sometimes you are wrong. I kept maintaining the
R package for PLS Path Modeling and adding more features. Emails from all over the world
filled my inbox with questions, inquiries, doubts, comments, suggestions, contributions, and
of course, complaints about those random but nasty, pain-in-the-butt, bugs. People asked
me how to apply PLS for a given problem; how to calculate such and such; what was the
meaning of those displayed numbers; and so on. Moreover, Lebart’s words were still in my
head. “Maybe it wouldn’t be such a bad idea to write a book on PLS Path Modeling after
all”| T used to say to myself. The more I remained involved with PLS —either by maintaining
the R package, applying it for my research projects, answering emails and collaborating with
other colleagues— the more I realized there was something missing. As John Lennon said:
“Life is what happens to you while you’re busy making other plans”. Finally, it was clear to
me that if I didn’t write this book, nobody else would. I decided not to think any more in
Lebart’s words, stopped making random plans, and instead made the decision to write this
book about Partial Least Squares Path Modeling ... with R.

Why this book?

The simplest answer to the question Why this book? is that there are no books dedicated
to instruct how to apply PLS Path Modeling using R. The extended answer is a little more
complex. First, I've found the time and motivation to write it. Second, I wanted to create a
resource that were different from the rest of texts about Partial Least Squares. Most of the
existing literature on PLS Path Modeling consists of material describing the methodology,
and showing the results from a real-life application. However, there are no resources that
show readers how they can play with the broad range of PLS-PM applications using the
existing software. If a grad student wants to apply a model, she has to read a paper, figure
out how the authors performed the PLS-PM analysis, and then struggle with the untold steps
that she might need to get her job done.

It is precisely the void in the current PLS literature with a lack of textbooks specifically

xi

dedicated to PLS Path Modeling, that I wanted to start filling. I wrote this text because I
wanted to have a way to make PLS Path Modeling more accessible to a wider audience and
not only to a select group of people learning PLLS-PM in a seminar or workshop. If someone is
interested in learning PLS-PM by herself, the path to the summit is very steep and slippery.
It is one thing to work on a PhD project where it is expected that you will walk through fire to
find the scant and elusive resources for your research topic. A completely different thing is to
work on an analysis project without having the time, accessability and availability to books,
electronic databases, journals, courses and other resources about Partial Least Squares.

Likewise, I wanted to share my experience and knowledge on PLS Path Modeling with the
users of my R package; I wanted to give them an approachable and useful book where they
can find the necessary material (mostly written in plain language) to carry out their own
PLS-PM analysis. This has been the toughest challenge for me. I believe that for ideas to
be widely spread and adopted they need to be perceived in a friendly and understandable
way. If they are perceived as obscure, arcane and intimidating, only a few people will be
crazy enough to dare to apply them. PLS Path Modeling has been available since the early
1980s but went unnoticed because there were no channels of distribution. Fortunately, this
has changed in the last decade, but still I want to add my own contribution.

This book is about both the art and the science of PLS Path Modeling analysis. By this I
mean that PLS Path Modeling is not only an algorithm to analyze data but also a method-
ology with its own mechanics and solid principles on which it is based. That is the science.
But as with any other analysis, there is also human involvement and subjectivity. The idyllic
perception of plugging some data in the computer, run an analysis, and get beautiful results,
rarely happens in real life. All analyses require the user’s skills and contextual knowledge to
review the data and interpret the results. The analyses also require the user’s know-how to
perform an iterative process of trial an error until he or she understands what the data is
telling. This is the art.

Audience of the Book

My hypothesized readers are a handful of senior undergraduate students, a few dozens or hun-
dreds (or who knows, maybe more) of graduate students, and a broad variety of researchers,
practitioners, and analysts that in one way or another are interested in applying PLS Path
Modeling. This book assumes almost no prior experience with PLS techniques, although I
imagine that you are reading this text because you have been already exposed to some PLS
method. However, this text does rely on a couple of more or less technical assumptions.

It assumes you have taken introductory courses of matrix algebra and statistics. I know this
is kind of naive but ideally you should have been introduced to concepts of matrix algebra like
the rank of a matrix, linear (in)dependence of vectors, matrix inversion, matrix factorization,

xii

orthogonality, and eigenvectors. You should also have been introduced to basic multivariate
analysis methods like regression analysis, principal component analysis, canonical correlation
analysis, etc. It would also be highly desirable to have previous experience with the statis-
tical software R. Having said that, I'm perfectly conscious that this profile is like a list of
requirements that human resources people typically ask in a job posting for the ideal but
imaginary candidate.

I have written the book as much informal as possible trying to keep it understandable even if
you don’t meet the previous assumptions. It doesn’t follow a complete mathematical rigor,
which I have relegated to a second plane. Instead, the discussion and explanations are more
in the spirit of a tutorial. The book is designed to offer something for people who want to get
started in PLS-PM, something to read as a jumping-off point for more complicated material.
This does not mean that it cannot be of interest to PLS jedis and ninjas. However, I assume
this book would be better used as your introduction to PLS Path Modeling analysis.

To independent readers My expectations is that many readers will use this book to
improve the efficiency of their research, enrich their existing PLS analytical tools, and develop
the skills needed for new types of studies. Much of what I use in practice was garnered through
self-directed experience, and I have tried to compile this knowledge in one place to make it
easier for other analysts to do the same.

To teachers using this book Although this book is written to stand on its own outside
the classroom, it is also been designed to be used as a supplement text within the classroom.
I actually don’t know how many courses about PLS-PM are out there in the academic world,
but I do know that many seminars and workshops on PLS-PM and related methods are
taught in an increasing number every year. While there are examples and opportunities for
practicing new skills as they are developed, there are no formal exercises or test questions in

this book.

Beyond this book

A lot of things have happened since that September of 2005. In particular, PLS Path Mod-
eling has become much more popular while its community has grown substantially, and this
trend is not going to slow down anytime soon.

This is the book that I wish existed when I started working on PLS in 2005. My aim in
writing this book has been to allow more people to get into the PLS path modeling world.
It is also intended as a stepping-stone to more advanced topics. The long-term goal is to
empower you in the use of PLS and enjoy the rewards that it brings. It is my hope that by
showing users how to apply the powerful PLS tools, they will be free to spend more time

on the pleasures of scientific inquiry and data analysis projects. I hope you find it useful
and are able to apply its content in your work and research projects. I certainly enjoyed the
challenge of putting the book together.

To comment or ask technical questions about this book, send an email to:
gaston.stat at gmail.com

Attribution

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. You can check the details at:
http://creativecommons.org/licenses/by-nc-sa/3.0/

In essence it states that I retain the Copyright but you are free to use, copy, reproduce and
distribute the material in this book, but only under the same license to this one. You may
not alter, transform, build upon it, or use this work for commercial purposes. However,
permission to use this book in nonprofit teaching is still granted, provided the authorship
and licensing information here is displayed. If you are using the book, either in teaching a
class or for your own learning, I would highly appreciate your letting me know.

I will be ridiculously happy and utterly pleased if you give proper attribution to my work. I'm
not asking you for money or any donations; I’'m not asking you to like me on any annoying
social network; I'm not asking you to register or fill any stupid form. I'm just simply asking
you to give me credit for my work. It costs you nothing, it doesn’t hurt you, and I guarantee
you that I would do the same for you. Also, it’ll give you instant credit in your karma
balance. Here’s how you can cite my book:

Sanchez, G. (2013) PLS Path Modeling with R
Trowchez Editions. Berkeley, 2013.
http://www.gastonsanchez.com/PLS Path Modeling with R.pdf

See how easy that is?
Gaston Sanchez

Berkeley, California.
January 2013.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Chapter 1

Introduction

This book provides a hands-on introduction to Partial Least Squares Path Modeling using
the R package plspm. Although there are a few texts that cover the theoretical aspects of
PLS Path Modeling (PLS-PM) with some applications to real data, there are virtually no
textbooks that teach how to use PLS Path Modeling and how to handle its broad range of
applications with the existing PLS-PM software. The goal of this book is to introduce you to
the world of PLS-PM using plspm and R through practical examples; teach you the basics
so that you can analyze your own data; and even turn you into a confident PLS-PM user
who can try out different analysis options.

1.1 PLS Path Modeling

Let’s face it once and for all: Partial Least Squares Path Modeling is a name that does not
provide many clues about what it is or what it can do. Simply put, Partial Least Squares
Path Modeling is a statistical data analysis methodology that exists at the intersection of
Regression Models, Structural Equation Models, and Multiple Table Analysis methods. If
you were to review the extensive literature about PLS Path Modeling, chances are that you
would find some variation of the following descriptions:

e PLS-PM is the Partial Least Squares approach to Structural Equation Modeling.

e PLS-PM is a statistical method for studying complex multivariate relationships among
observed and latent variables.

e PLS-PM is a data analysis approach for studying a set of blocks of observed variables
in which each block can be summarized by a latent variable and that linear relations
exist between latent variables.

The first description above is the most common on PLS Path Modeling. In most cases, PLS
Path Modeling is usually referred to as the PLS approach to Structural Equation Modeling
(SEM). However, around the small but growing PLS community, the term Path Modeling
is preferred over Structural Equation Modeling, although both terms are often used inter-
changeably. My preferred description is the one that views PLS-PM from a broader con-
ceptual perspective for analyzing multiple relationships between blocks of variables. Under
this framework, we establish the relationships among the blocks by taking into account some
previous knowledge (e.g. theory) of the phenomenon under analysis. In addition, we assume
that each block of variables plays the role of a theoretical concept represented in the form of
a latent (unobserved) variable.

Personally, I try to avoid using the term SEM for two main reasons. The first reason has to do
with the connotations behind Structural Equation Modeling where the dominating approach
is based on Covariance Structure Analysis (sometimes also referred to as LISREL). Because of
the overwhelming market share of LISREL, PLS-PM occupies a small niche within the SEM
community. For the same reason, CSA purists perceive PLS-PM as an awkward methodology
that distorts the SEM ideals (for the record, I have nothing against the CSA community and
the Lisrelites). The second reason has to do with the broad range of applications outside the
SEM spectrum that can be targeted with the flexible PLS-PM standpoint.

Though I don’t use SEM often, I sometimes may use the term SEM-PLS because it helps
people to have some reference that allows them to get a better idea of the method. What I
prefer to use is the term PLS Path Modeling to give the methodology its own territory.
Yes, you can apply PLS for SEM applications, but there are also many other types of problems
that can be treated via PLS-PM that don’t fit within the SEM framework.

The Network Analogy

It is not easy to explain PLS Path Modeling in simple terms to newcomers but I'll give my
best shot. First, imagine that you have a network of variables. Usually, the connections in
the network are assumed to represent some cause-effect process. But you can think of it as
a flow chart where the process flows in one direction (no loops allowed). Having defined the
network, one of the goals is to quantify the connections or relationships among the variables.

The interesting part comes with the subtlety that each of the connected variables are obtained
by combining a set of other variables. Although this is the interesting part it is also the tricky
part, but the main idea to keep in mind is the network of connected variables. PLS Path
Modeling quantifies the relationships by considering the network as a system of multiple
interconnected linear regressions. Still don’t get it? That’s why I wrote this book as my bold
yet humble attempt to help people not only understand Partial Least Squares Path Modeling
but also to show them how to apply it in R.

1.2 R package plspm

R is a free open source software for data analysis, statistical computing, and graphics. In
turn, plspm is an R package dedicated to Partial Least Squares Path Modeling analysis. The
plspm project timidly began in the fall of 2005 as part of my PhD work. One of the initial
goals was to create a package to estimate PLS path models in R. Almost four years later, the
first R package for PLS-PM was created and the first version was released on April, 20009.
Two months later, with the collaboration of Laura Trinchera, REBUS-PLS for detecting
classes was added to plspm. Since then, various features and new capabilities have been
implemented in the package, and its development continues every year.

There are a number of other softwares for PLS Path Modeling: perhaps the most well known
are SmartPLS (by Christian Ringle, Sven Wende and Alexander Will) and the PLSPM
module from XLSTAT (by Addinsoft). In addition, there’s also semPLS which is another R
package (by Armin Monecke).

One of the main differences of plspm to other PLS-PM software is the lack of a graphical
interface to draw path diagrams. This may be a surprise for readers that are used to working
with other programs in which you are able to define a model with a combination of mouse
clicks and dragging objects. While plspm might not be the optimal choice if what you're
looking for is using a mouse to define the models, it does not mean that it is less advantegeous.
On the contrary, you will be surprised by how fast it is to define a model and run a PLS-PM
analysis with plspm. The other major difference is that you need to know a little bit about
R and feel comfortable typing commands. But this is precisely what makes plspm stronger
by taking full advantage of the data analysis options and programming capabilities of R.

1.2.1 Why R?

The main reason for choosing R is that it is an extremely powerful program for manipulat-
ing and analyzing data. R’s unstoppable popularity has made it the software for statistics
and analytics in many disciplines, and it is increasingly taught at many universities. The
second major reason for selecting R is that it’s platform independent —you can use it under
Windows, Mac or Unix— And is free. You don’t have to spend a cent in licenses, renew
contracts, negotiate upgrades, or pay for maintenance. Commercial software vendors may
provide support and offer some type of guarantee, but that’s secondary. You just can’t beat
the price and functionality of R.

R is enriched by the fact that many people (me among them) from all over the world con-
tribute and share their own work in the form of packages for almost whatever method you
can think of. No other commercial software has that advantage of offering the latest state-of-
the-art methods. Likewise, R has unrivaled help resources, both online and physical. There
are many online forums, email lists, interest groups, forums, blogs, and websites full of rich

information about R. In addition, many R books of excellent quality are increasingly pub-
lished every year. What I really value about R is that it is open source: you can see the guts
of the code. It’s not a black box, so you can actually see what’s behind the functions you
are using. In addition, being a free software, R has no rival for reaching the marginalized
academic places of the world. Just think about those students, professors and researchers
from developing countries that would be left further behind without resources such as R.
As the Spanish say, bueno, bonito y barato, which means “good, beautiful and inexpensive”,
Why use anything else?

1.3 About Partial Least Squares

You have probably heard the term Partial Least Squares a few times before reading this
book. If you are like me, those three words might be intimidating the first time you hear
them. You are probably familiar with least squares, but what about the partial? Partial
Least Squares even sounds like a spell out of Harry Potter’s world.

So, what exactly is Partial Least Squares? Well, it depends on who you talk to. Perhaps the
most popular answer is to equate PLS as a regression analysis technique. This is too narrow
and somewhat misleading, especially because there are so many methods, techniques, and
algorithms that share this brand. It is true that PLS has to do with regression analysis but it
is much more than that. From the broadest point of view, PLS is a family —I would say a big
family— of data analysis methods. However, this is perhaps the main obstacle to defining
what PLS is. These methods are designed for dealing with a wide range of data analysis
tasks such as exploration, visualization, explanation, prediction, classification, and study of
structural systems. In its purest data analysis sense, PLS can be viewed as a set of methods
for analyzing multiple relationships between various blocks of variables (or tables of data).
If we consider a block of variables as a data table, the difference between the various PLS
methods depends on the number of tables and the type of relationships between variables.

The perception of PLS methods is not exempt of misconceptions, misunderstandings, and
misinterpretations. One initial obstacle has to do with the terminology and jargon: latent
structures, projections, component-based, soft modeling, scores, loadings, path coefficients,
path diagrams, just to mention a few terms. There is also a widespread use of acronyms:
PLS, PLSR, PLSPM, NIPALS, and many more. However, once you have surpassed the
initial phase of adaptation, PLS methods open a new way of dealing with many statistical
problems. Think of PLS like a set of tools that you can use for different purposes. Well
applied, PLS can be a very handy and useful set of tools. However, you have to keep in mind
that there is no single best approach to analyze data, and there is also no single method that
works for all problems. PLS is not the exception. In this sense, PLS data analysis is both
an art and a science that require not only mathematical principles, but it also requires some
intuition and skills that are developed over time with practice.

1.3.1 Short tale of PLS

I have dedicated an entire appendix at the end of the book to the historical overview of PLS
Path Modeling. However, let me offer you a brief summary to start making things a bit
more clear. The development of PLS methods as we know them took place over a period
of approximately 20 years. Its origins can be traced back to the mid 1960s where the first
PLS analytical tools were developed by Herman Wold at the Uppsala University, Sweden.
Throughout the 1970s, Wold’s team refined and polished different techniques that gave rise to
a series of methods more or less unified under a common umbrella: a set of approaches whose
estimation was based on iterative algorithms of least squares regressions. Briefly, Herman
Wold and his group developed PLS as a multi-tool to handle different types of problems that
could be solved by applying least squares. In other words, rather than a single technique,
the set of PLS methods was developed as a toolkit to tackle several data analysis problems
and solving them by applying a number of adapted least squares procedures.

In the 1980s, the evolution of the PLS methods experienced an interesting metamorphosis
led by Svante Wold (son of Herman Wold) with the application of the PLS principles to the
analysis of chemical data. Prior to this event, the application of PLS methods was focused on
economics and social sciences without really catching the attention of social researchers and
related practitioners. However, the application to chemical data opened an unexplored venue
for some of the PLS tools and were quickly accepted with great success. This developmental
branch took the shape of the techniques associated to what is known as PLS Regression.

Not all of the PLS tools shared the same luck as the PLS Regression techniques. During the
1990s, the less successful PLS Path Modeling (PLS-PM) approach remained in an almost
complete oblivion. Fortunately, PLS-PM was kept active by a handful of practitioners,
mainly in the USA, saving it from extinction. Then, in the late 1990s, PLS Path Modeling
caught the attention of a group of european statisticians and analysts under guidance of
Michel Tenenhaus. With an authentic curatorial task, they slowly repositioned the general
framework of PLS methods on the data analysis map.

In the last decade (2000-2010), the PLS analysis methods were subjected to a great effort of
international diffusion which continues today. As a result, new proposals and developments
have been appearing in all the different PLS areas. In addition, several programs and multiple
software have been released that allow users to apply the variety of PLS related methods.
This reflects their great modeling potential, versatility, and analytical capabilities.

1.3.2 Regressionists and Path-modelists

Nowadays, there are two main populations within the PLS world. PLS users can be roughly
separated in two populations, let me call them: the regressionists and the path-modelists.
The regressionists are comprised by users of PLS regression methods. The path-modelists

are related to Path Modeling approaches (SEM and multiple table analysis). Of course,
this is a simplistic view, but reflects what I've seen in congresses, seminars, talks, and in
the PLS literature. You are either identified as a regressionist or as a path-modelist. The
regressionists typically work with bio-chemical and life sciences data that involve analytical
problems from disciplines such as chemometrics, sensometrics, and biometrics in general. In
constrast, the path-modelists usually work with data from social siences like psychometrics,
marketing, information technology, and economics.

I was introduced to PLS techniques from a regressionist standpoint but got involved with
the path-modelists for my PhD research. I suppose that makes me one of those rare hybrids
in the middle of both traditions. Although both groups try to take ownership of the brand
name PLS, I prefer to be generalist, looking at the forest instead of the trees. It’s undeniable
that the projects you get involved with, the fields of research you work in, and the type of
data you analyze, shape you as a regressionist or as a path-modelist. But you don’t have to
take party for one group and break links with the other.

1.4 Structure of the book

Although this book is an introductory book for PLS Path Modeling it is not a comprehensive
reference nor the definitive PLS-PM book; for that there are great resources written by
PLS gurus that describe the bells and whistles of PLS. This book can be divided in two
major parts. Part I (Chapters 2 - 5) sets the fundamentals of PLS Path Modeling and is
organized as a progressive series of topics, each designed to build upon concepts introduced
earlier. This first part follows a concise learning path that is essential for a firm grasp on
PLS Path Modeling. Part II (Chapters 6 - 9) covers topics at the next level in the PLS-PM
learning scale. The chapters in the second part are self-contained and you could read them
independently from one another or in a different order than the way they are numbered.

Part I

Chapter 2 provides the essentials you need to know about PLS Path Modeling. A basic
hands-on introduction is also provided on how to perform a PLS-PM analysis with plspm

Chapter 3 introduces the theoretical framework behind PLS-PM and describes the model
specifications as well as the algorithm.

Chapter 4 describes how to interpret and diagnose the results from a PLS-PM analysis,
specifically with the output provided by plspm.

Chapter 5 shows you how to run a PLS-PM analysis from beginning to end with an
adapted model on customer satisfaction applied to educational services.

Part 11

Chapter 6 introduces the topic of comparing groups in PLS Path Modeling, and describes
two common approaches for comparing two models: 1) the bootstrap t-test, and 2) the
permutation test.

Chapter 7 describes testing moderating effects with three types of approaches: 1) product-
indicator, 2) two-stage approach, and 3) categorical variable approach.

Chapter 8 describes higher-order contructs with three methods: 1) repeated indicators
approach, 2) two-step approach, and 3) hybrid approach.

Chapter 9 is dedicated to the issue of detecting classes with the REBUS methodology.

Appendix A contains a historical overview of PLS-PM

1.5 R and plspm

This book assumes that you have familiarity with the software environment R. The official
website of the R project, www.r-project.org, is the best place to look for information about
R. It includes links to the Comprehensive R Archive Network, better known as CRAN, where
you can download R. Since R is available for Linux, MacOS X, and Windows, there is no
excuse for not installing it.

Although I'm assuming that you have some knowledge on how to work with R, I'm going to
begin with some basics on how to start using the R language. For information on downloading
and installing R check the CRAN webpage:

http://cran.r-project.org.

If you come across any problem or if you want to know more about the installation process,
you can look for tutorials in youtube and/or ask google (or your preferred search engine).

R comes with a bunch of stuff, including a simple graphical user interface (GUI). Now, if
you were expecting a highly visual interface and drag-and-drop features, I'm afraid you will
be disappointed. Instead, what you get with the GUI is both the R environment and the R
console at the same time. This means that you have to type commands in. In the CRAN
website you have a variety of contributed documentation at:
http://cran.r-project.org/other-docs.html

For R newbies and rookies good places to start are:

e R for Beginners (by Emmanuel Paradis)
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

http://www.r-project.org
http://cran.r-project.org
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

10

e Kickstarting R (compiled by Jim Lemon)
http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.html

There is no single best solution for working with R. Some people may prefer to work with
R from the command line. Others might be perfectly happy working with the default GUI
that comes with the versions for windows or Mac. I learned R the hard way by using a text
editor with no syntax highlighting and worked like that for seven years. But you don’t have
to be a stubborn martyr like me. Be smart and use one of the free integrated development
environments (IDE) developed for R. Here are some interesting IDEs that you can explore:

e RStudio http://www.rstudio.org
e StatET http://www.walware.de/goto/statet
e ESS (Emacs Speaks Statistics) http://ess.r-project.org

I use RStudio and I couldn’t be happier (not to mention more productive) I highly recommend
it. But you can use whatever other IDE fits your needs and preferences.

New versions of R are released every six months, once in April and again in October. This
is important to know because from time to time you must update your R version.

Installing packages

By default, R comes with many packages (a.k.a. libraries) that allow you to perform a variety
of analysis and tasks. However, there are many other additional R packages that don’t come
with the default version but that you will probably want to add. To install a package we use
the function install.packages(). For instance, to install the package colortools, open R
and type in your R console:

installing colortools (this is a comment!)
install.packages()

When you install a package you will have to choose a CRAN mirror, so choose one that is clos-
est to your geographical location. What we are doing with the function install.packages()
is saying that we want to install the package colortools. Note that comments are indicated
with the symbol #, that is, anything that appears after # won’t be executed. I use comments
a lot and you will see that almost all the R commands in this book have their corresponding
comments. In this way you can better read the R code and understand what I'm doing.

Once a package has been installed, you need to load it in your current R session. To do this,
use the function library() and call it like this:

loading colortools (this is another comment!)
library(colortools)

http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.html
http://www.rstudio.org
http://www.walware.de/goto/statet
http://ess.r-project.org

11

For those readers using R for the first time, you should know that R is case-sensitive. This
means that the commands in this book should be entered exactly, using the same capital
(uppercase) and small (lowercase) letters provided in the examples. If a command is library
(lowercase) but you type Library or LIBRARY, it will not work.

1.5.1 Installing plspm

plspm is an R package for performing Partial Least Squares Path Modeling (PLS-PM) anal-
ysis. plspm is available for free on CRAN at:
http://cran.r-project.org/web/packages/plspm/index.html.

The main version of the package is the one hosted in CRAN. Install it like you would install
any other package in R by using the function install.packages():

installing the package 'plspm'

install.packages()

Once plspm has been installed, you can use library() to load the package:

load package 'plspm'
library()

plspm comes with a number of functions that perform various types of analysis. The main
function, which has the same name as the package, is the function plspm() that is designed
for running a full PLS-PM analysis. In this book plspm refers to the R package and plspm()
refers to the function.

For a description of plspm() and its arguments, use the function help() like so:

asking for help about function plspm
help(plspm)

When you use the function help() a window with documentation about the topic you are
asking help about for will open. This documentation is the information contained in the
technical manual of the package and is also available in pdf format at:
http://cran.r-project.org/web/packages/plspm/plspm.pdf

More friendly documentation and tutorials about plspm can be found at:
Www.gastonsanchez. com/plspm.

plspnm is still evolving; ongoing refinements, new features and fixing bugs are being enhanced
regularly. Even as this book was being written, plspm has evolved, and you can expect it to
keep doing so.

http://cran.r-project.org/web/packages/plspm/index.html
http://cran.r-project.org/web/packages/plspm/plspm.pdf
http://www.gastonsanchez.com/plspm

12

1.5.2 Some Extra Details

Although most of the case studies in this book are simple examples, all the data used is
real and the models should be fairly applicable. The hypotheses, the relationships, and the
conceptualizations behind every model are mine and you shouldn’t take them as the final
word. You might agree or disagree with my conclusions and interpretation of the results.
That’s fine with me; we can sit down and order a beer or a coffee to discuss the material in
more detail. For this book at least, the journey is more important than the results.

Data for Examples: Almost all the data for the case studies in the book come with the
package plspm. This means they are already available and you don’t need to import anything.
There is only one case study where you need to download a data set and import it in R (see
Chapter 5).

Code Examples: Most of the code examples in the book are shown with input and output
in a highlighted format like this one:

stupid example
=2

=3

sum

=X+y

easy peasy

N # N #< X #

[1] 5

Much of the code in the examples reflects my personal taste for working with R, which might
not be the same as yours. Also, I've chosen clarity over shortness and efficiency. Many of
the examples could be executed in a more synthesized or efficient way. However, I decided to
use relatively verbose code to help explain how things are done. I prefer to use two or three
times more lines of code, writing function arguments explicitely, and commenting the main
steps, to try to help readers understand what I'm doing.

R style flavors There have been efforts of different groups to establish some style guidelines
and advices for writing code in R. One of the most popular flavors is the Google’s R Style
Guide available at:
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
According to Google’s guidelines (and many other authors), I should use the assignment
symbol ’<-’ instead of the equal symbol *=".

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

13

I used to do this
x <- 3

now I do this

y =3

I do not regard the symbol =’ as bad for assignment, but you can use whatever you like.

About this book This textbook was entirely written using the Sweave and knitr “combo”
with RStudio. Sweave is an R package developed by Friedrich Leisch that allows to embed the
R code for complete data analyses in LaTeX documents. knitr is an R package developed by
Yihui Xie that allows you to produce dynamic reports with R while adding more capabilities
to Sweave. RStudio supports the powerful and flexible system of Sweave and knitr for
creating dynamic reports and reproducible research using LaTeX.

I know that R can be tricky to learn and, unless you are a programming geek, will take you
some time to get used to. But the good news is that you should be able to reproduce all the
examples in your machine by simply copy-pasting the R code in this book. In this way, you
learn how to apply PLS-PM methods using some bits of text and code in R. Of course, you’ll
be most successful with this book if you have some familiarity with R.

1.6 Reading List

Instead of having a long boring list of references at the end of the book, I've decided to
provide at the end of every chapter a suggested reading list with the main references of the
discussed material. So here is the reading list for the content in this chapter.

Books on PLS Path Modeling There are many resources about PLS Path Modeling:
articles, papers, special editions of journals, book chapters, encyclopedia’s entries, symposium
proceedings, textbooks, handbooks, and websites. The following books are my suggestion of
resources that talk about PLS in general. In the next chapters I will offer other references
depending on the topic we are discussing.

e Handbook of Partial Least Squares edited by Esposito Vinzi V., Chin W.W., Henseler
J., and Wang H. (2010). As part of the Springer Handbooks series on computational
statistics, this volume gives a comprehensive overview of PL.S methods with an emphasis
on Marketing applications. If you can aford it, it’s worthwhile the investment.

e La Régression PLS: Théorie et Pratique by Michel Tenenhaus (1998). This would
be the best-selling PLS book ...if it wasn’t written in French. It’s the ideal textbook

14

for a PLS course for French speakers and a good excuse to start learning French.

e Systems under indirect observation: causality, structure, prediction. Vol Il edited
by Karl Joreskog and Herman Wold (1982). If you can have access to this book with
green cover you must definitely check it out. Perhaps the only compendium by Wold
et al with all the material of what we would officially call PLS Path Modeling.

Books on R As with PLS-PM resources, the same can be said about R, although there
is much more material about R than PLS-PM. My recommended list of books is for readers
that have little or no experience with R. These are in my opinion good textbooks that will
help you gain and improve your R data manipulation skills.

e Beginning R: An Introduction to Statistical Programming by Larry Pace (2012). A
hands-on book showing how to use the R language, write and save R scripts, build and
import data files, and more.

e A Beginners’s Guide to R by Alain F. Zuur, Elena N. Ieno, and Erik Meesters (2009).
The text covers a variety of tasks that can sometimes frustrate beginners: how to
download and install R, import and manage data, elementary plotting, an introduction
to functions, and common beginner mistakes.

e Using R for Data Management, Statistical Analysis and Graphics by Nicholas J.
Horton and Ken Kleinman (2011). This book covers many common tasks such as
data management (how to get your data in R), how to summarize and get descriptive
statistics.

e Data Manipulation with R by Phil Spector (2008). This book presents a wide array
of methods applicable for reading data into R, and efficiently manipulating of data.

Chapter 2

Getting Started with PLS-PM

In this chapter we will cover the basic concepts that are essential for a firm grasp on PLS
Path Modeling. Rather than jumping into the technical aspects of the PLS-PM algorithm, I
prefer to give a hands-on introduction with a simple yet interesting example of how to apply
PLS-PM. The objective is to set the stage so that you are prepared for the content discussed
in the rest of the book. The theoretical details and the nitty-gritty of the PLS-PM engine will
wait until the next chapter. I have tried to keep everything as simple and understandable as
possible. But at the same time, I have tried to cover as many aspects as possible, especially
from the Structural Equation Modeling point of view. However, I have taken the liberty
of allowing me a number of descriptions that don’t necessarilly satisfy the formal material
discussed in other textbooks.

2.1 Case Study: Index of Success

For this example our goal will be to obtain an Index of Success using data of Spanish pro-
fessional football teams. The data comes from the professional Spanish Football League, La
Liga, and it consists of 14 variables measured on 20 teams. I collected and manually cu-
rated data from the 2008-2009 season from different websites like LeagueDay.com, BDFutbol,
ceroacero.es, statto.com and LFP. The resulting dataset comes with the package plspm under
the name spainfoot. To get access to the data, you must first call the package plspm and
then use the function data() in your R console:

load package plspm
library(plspm)

load data spainfoot
data(spainfoot)

15

16

To get an idea of what the data looks like we can use the head () function which will show

us the first n rows in spainfoot

first 5 rows of spainfoot

head(spainfoot, n = 5)
H## GSH GSA
Barcelona 61 44
RealMadrid 49 34
Sevilla 28 26
AtleMadrid 47 33
Villarreal 33 28
YC RC
Barcelona 76 6
RealMadrid 115 9
Sevilla 100 8
AtleMadrid 116 5
Villarreal 102 5

SSH
0.95
1.00
0.74
0.95
0.84

SSA GCH GCA
0.95 14 21
0.84 29 23
0.74 20 19
0.84 23 34
0.68 25 29

CSH
0.47
0.37
0.42
0.37
0.26

CSA WMH WMA LWR LRWL

0.32
0.37
0.53
0.16
0.16

14
14
11
13
12

The description of each variable is given in the following table:

2.1.1 Of latent and manifest variables

13 10 22
11 10 18
10 4 7
7 6 9
6 b 11

Table 2.1: Description of variables in data spainfoot

Variable Description

GSH total number of goals scored at home

GSA total number of goals scored away

SSH percentage of matches with scores goals at home
SSA percentage of matches with scores goals away

GCH total number of goals conceded at home

GCA total number of goals conceded away

CSH percentage of matches with no conceded goals at home
CSA percentage of matches with no conceded goals away
WMH total number of won matches at home

WMA total number of won matches away

LWR longest run of won matches

LRWL longest run of matches without losing

YC total number of yellow cards

RC total number of red cards

One of the most common applications of PLS Path Modeling is the calculation of indices to
quantify some key concept or notion of importance. Common PLS examples of indices may

17

include Index of Satisfaction, Index of Motivation, Index of Usability, or in our case an Index
of Success. The issue with these four concepts (satisfaction, motivation, usability, success), is
that they are things that cannot be measured directly. I could ask you how satisfied you were
with the food you had in the last restaurant you visited. Or I could ask you how motivated
you were to start reading this book. But even though I could ask you those questions, that
doesn’t mean I'm able to measure your satisfaction or your motivation. In fact, I'm not sure
whether I would ever be able to measure such things, at least in a precise quantitative form. I
cannot take a blood sample from you and measure your level of satisfaction; there is no device
like a thermometer or a baumanometer that I can use to measure the amount of motivation
you have. However, I can use a set of other questions that in some way reflect how happy or
how sad you are, and then combine this information and summarize it to create an index of
satisfaction. Likewise, I can gather information about the results of the matches played by
the Spanish teams, and then combine it to get an index of success.

Latent Variables

As you can imagine, satisfaction, motivation, usability and success are only four examples of
an infinite number of other concepts that cannot be measured directly. Admittedly, some-
times we must face the fact that the variables of interest in our models cannot be observed
nor measured directly. These concepts receive the special name of latent variables but
they are also known as constructs, composites, hypothetical variables, theoretical concepts,
intangibles, and factors.

These variables are very common in social sciences and behavioral sciences (e.g., psychology,
sociology, economy) in which there are many concepts of theoretical nature. For instance,
psychologists speak of intelligence, commitment, and self-esteem. Sociologists refer to social
structure, social stratification, and social status. Economists speak of utility, economic de-
velopment, and organizational performance. But we can also find unobserved entities in the
biological sciences. For example, in ecology we might encounter concepts like soil fertility,
territory quality, and habitat structure.

The interesting part is that when we work with theoretical concepts and constructs (i.e.,
developing theories and models) we tend to conceive expected causal relationships on them.
For example, let’s consider the following actions:

e A marketing manager proposes new return policies to increase customer satisfaction.

e A group of high school teachers decide to increase the extracurricular activities to
improve students’ academic achievement.

e A scientist suggests planting native flowers to regenerate the habitat structure of polli-
nator insects.

e A coach establishes a training scheme to improve the defensive performance of his team.

18

The actions above illustrate courses of action that are undertaken as a result of expected
relationships between two or more theoretical concepts. The marketing manager believes
that changing the actual product return policies will meet customers’ needs, who, in turn,
are expected to be more satisfied. The teachers believe that setting more extracurricular
activities will motivate students and increase their academic performance. The scientist
believes that planting native flowers will regenerate the natural habitat of pollinators and
hence recover their population. The coach believes that setting a new training scheme will
make the defenders faster, and this in turn will improve their defensive skills.

Despite its wide use, there is no single general definition of a latent variable. You are free to
research the related literature on structural models and latent variables, and draw your own
conclusions. In this book, I consider latent variables to be:

e hypothetical variables (but I honestly don’t care if they are real or not)
e cither impossible or very difficult to observe or measure (cannot be measured directly)

e regarded as a data reduction device (convenient means of summarizing a number of
variables into many fewer factors)

e are taken as underlying variables that help explain the association between two or more
observable variables

Our toy model

As it is typical with structural models, we usually rely on some kind of theory to propose a
model. It can be a very complex theory or an extremely simple one. In this case we are not
going to reinvent the wheel, so let’s define a simple model based on a basic yet useful theory:

the better the quality of the Attack, as well as the quality of the Defense,
the more Success.

Our simple theory involves two hypotheses. In one of them we are supposing that if a team
improves its attack, it should be more successful and hence win more matches. The other
hypothesis is that if a team improves its defense, it should also be more successful, or at least
it should avoid losing matches.

Our theory could also be expressed in a more abstract form like this:
Success = f(Attack, De fense)

This is simply a conceptual means to say that Success is a function of Attack and Defense.
But we could go further by specifying a linear function and expressing our theory with an
equation like this one:

Success = by Attack + by De fense

19

In addition to expressing our model in text and mathematical format, we can also display
our model in a graphical format using what is called a path diagram —this is why is called
PLS path modeling— These diagrams help us to represent in a visual way the relationships
stated in our models. In this example, the following diagram depicts the relation success
depending on the quality of the attack as well as on the quality of the defense:

Figure 2.1: Diagram depicting our simple model

Manifest Variables

Although the essence of latent variables is that they cannot be directly measured, that does
not mean they are nonsense or useless. To make them operative, latent variables are indirectly
measured by means of variables which can be perfectly observed-measured. These types of
variables are called manifest variables (MVs), also known as indicators or items. We
assume that manifest variables contain information that reflect or indicate one aspect of the
construct; hence we use the information contained in indicators to obtain an approximate
representation of the latent variable.

Formative and Reflective Indicators

Once we have assumed that latent variables can only be observed and measured indirectly
through the use of manifest variables, we need to consider the ways in which latent variables
are indirectly measured. Latent variables can be measured in two ways:

e through their consequences or effects reflected on their indicators

e through different indicators that are assumed to cause the latent variables

20

In the first case, called reflective way, manifest variables are considered as being caused by
the latent variables. The second case is known as formative way because the latent construct
is supposed to be formed by its indicators. The main difference between the reflective and
formative ways has to do with the causal-effect relationships between the indicators and the
constructs (look at the direction of the arrows). The formative and reflective approaches for
measuring a latent construct are illustrated in the next figure trough the Attack construct.

CAUSES EFFECTS

Hours of training Number of corners

Calories in diet Shots on goal

Massages & rest Goals scored

Formative Indicators Reflective Indicators

Figure 2.2: A latent variable measured by formative and reflective indicators

Suppose that a researcher is studying a team trying to measure its quality of attack. She
can use two approaches:

e ask about different statistics reflecting the attack
e ask about possible practices affecting the attack

Different effects might be evaluated, for example: the number of corner shots in every match,
the number of shots on goal, or the number of goals scored. These are typical indicators of
how good or bad the attack of a team is. The better the attack, the more number of any
of these indicators. Conversely, the researcher might ask about the hours of training in the
field, about the kind of food and the number of calories in the players diet, or the amount
of time receiving massages and resting periods. The statistics about shots and goals can
be considered as reflective indicators because they reflect the attack; patterns of training
and care-taking practices can be seen as formative indicators because they are thought to
contribute in the quality of attack.

2.1.2 Measuring Success, Attack and Defense

We have proposed a model in which the Overall Success depends on the Quality of the Attack
as well as on the Quality of the Defense. These are our three latent variables. Now we need

21

to establish a set of indicators for each of the three constructs.

Block of Attack If you check the available variables in the data spainfoot, you will see
that the first four columns have to do with scored goals, which in turn can be considered to
reflect the Attack of a team. We are going to take those variables as indicators of Attack:

e GSH number of goals scores at home
e GSA number of goals scores away
e SSH percentage of matches with scores goals at home

e SSA percentage of matches with scores goals away

Block of Defense The following four columns in the data (from 4 to 8) have to do with
the Defense construct

e GCH number of goals conceded at home
e GCA number of goals conceded away
e CSH percentage of matches with no conceded goals at home

e CSA percentage of matches with no conceded goals away

Block of Success Finally, columns 9 to 12 can be grouped in a third block of variables,
the block associated with Success

e WMH number of won matches at home
e WMA number of won matches away
e LWR longest run of won matches

e LRWL longest run of matches without losing

2.1.3 Path Model

To be honest, our example is very simple because that’s how textbook examples are. In this
case, we don’t require too much thought to decide what kind of measurement (reflective or
formative) should be considered for the manifest variables. As you can tell, each block of
variables reflects to some extent the latent construct they are associated with. Bear in mind
that many times is not always clear whether an indicator should be treated as formative or
reflective. In such cases we might need the assistant of an expert in the field we are working
in to decide the type of measurement to be used.

22

We already saw a simple diagram with the relationships between the latent constructs. But
now we need to take a step forward: we need to put all the pieces together and get the
whole enchilada diagram with both latent and manifest variables. To do this we use a
path diagram or an arrow diagram. The function of these diagrams is to have a graphic
representation of the relationships among all the variables present in our model. These types
of diagrams can be drawn following a dozen of established rules and conventions. Through
my experience, however, I've realized that I just need three of those principles for drawing
my PLS path diagrams:

1. manifest variables are represented in a rectangular form
2. latent variables are represented in an elliptical form
3. relationships between variables are represented with straight arrows

The graphical display of our complete model is as follows:

GSH

SSH
WMH

SSA
[success S
LWR

GCH
LRWL

GCA

CSH

CSA

Figure 2.3: Path Diagram depicting our simple model

2.1.4 Inner and Outer models

A full path model is comprised by two submodels: the structural model also known as inner
model and the measurement model also known as outer model. The inner model is the
part of the model that has to do with the relationships between latent variables.

23

Inner Model @

Figure 2.4: Inner model: only relationships between latent variables

The outer model is the part of the model that has to do with the relationships between each
latent variable and its block of indicators

GSH Outer Model
GSA
SSH
WMH
SSA
S
LWR
GCH
LRWL
GCA
CSH
CSA

Figure 2.5: Outer model: relationships between each construct and its indicators

2.2 Applying PLS-PM with the R package plspm

Finally we have our full structural model and its beautiful path diagram. Now what? What
do we calculate in a PLS Path Model? Well, there are a lot things that can be (and that are
actually) calculated in a PLS path model. But the most important ones, or at least the ones
you have to remember, are the estimation of the latent variable scores and the quantification

24

of the relationships in the model. For each arrow, we will obtain an associated numeric value
representing the “strength” and “direction” of the relationship. For each latent construct,
we will obtain a score. In some sense, we will get not only an Index of Success but also an
Index of Attack and an Index of Defense.

2.2.1 Preparing the ingredients for plspm()

In order to perform a PLS-PM analysis the next step is to prepare the ingredients to start
cooking our PLS path model with the function plspm(). This function is pretty much the
only function that you need to run the analysis. The tricky part, however, is to get the
right ingredients in the right format to be plugged inside plspm(). At least we need three
mandatory ingredients: 1) a data set, 2) an inner model, and 3) an outer model. We already
have the data in the data frame spainfoot. So let’s talk about how to specify an inner
model and an outer model for plspm().

Inner model matrix

As we already mention, the inner or structural model represents the relationships between the
latent variables. Looking at the diagram of the inner model, we can think of it as a flowchart
representing a causal process. Moreover, we can think of the inner model as a network and
by doing so we can represent it in matrix format. This is exactly what the second ingredient
is for plspm(): the path matrix. This is basically an R matrix, but not any kind of matrix.
The path matrix must be a lower triangular boolean matriz. In other words, it must be a
square matrix (same number of rows and columns), the elements in the diagonal and above
it must be zeros, and the elements below the diagonal can be either zeros or ones. Here’s one
way in which the inner matrix could be defined:

rows of the inner model matrix
Attack = c(0, 0, 0)
Defense c(0, 0, 0)
Success = c(1, 1, 0)

path matrix created by row binding
foot_path = rbind(Attack, Defense, Success)

add column names (optional)
colnames(foot_path) = rownames(foot_path)

What we are doing is creating three vectors that will be the rows of the argument path matrix.
Then we use the function rbind () that creates a matrix by “stacking” the row vectors. And

25

finally we use the row names of the matrix foot_path as its column names. To see how the
inner matrix looks like just type its name in the R console:

let's see it

foot_path

Attack Defense Success
Attack 0 0 0
Defense 0 0 0
Success 1 1 0

The way in which you should read this matrix is by “columns affecting rows”. A number one
in the cell 7,5 (i-th row and j-th column) means that column j affects row . For instance,
the one in the cell 3,1 means that Attack affects Success. The zeros in the diagonal of the
matrix mean that a latent variable cannot affect itself. The zeros above the diagonal imply
that PLS-PM only works with recursive models (no loops in the inner model).

A nice feature available in plspm is the function innerplot () that allows us to visualize the
inner matrix in a path diagram format. This is specially useful when we want to visually
inspect the model defined for path matrix.

plot the path matrix
innerplot (foot_path)

Attack

Defense = Success

Figure 2.6: Visualizing the path diagram of the inner model with innerplot

26

Outer model list

The third ingredient is the outer model. The way in which the outer model is defined is
by using a list containing vectors. Basically, the idea is to indicate the set of manifest
variables that form each block. In other words, we tell plspm() what variables of the data
are associated with what latent variables. The best thing is to explain this with an example.

define list of indicators: what variables are associated with
what latent variables
foot_blocks = 1list(1:4, 5:8, 9:12)

The list above contains three elements, one per each block of indicators. Each element is
a vector of indices. Thus, the first block corresponding to the latent variable Attack is
associated with the first four columns of the data set. The second block, associated to
Defense, is formed by columns from 5 to 8. And Success is associated with columns from
9 to 12.

Vector of modes

By default, plspm() assumes that the measurement of the latent variables is in reflective
mode, known as mode A in the PLS-PM world. However, I strongly recommend you to
explicitly define a vector of modes. This is indicated by using a character vector with as
many letters as latent variables:

all latent variables are measured in a reflective way
foot_modes = c("A", ,)

An alternative type of measurement is the formative mode, known as mode B. So, if you had
some latent variables in mode B, say Success, you would have to specify this as follows:

Success in formative mode B
foot_modes2 = c(, ,)

2.2.2 Running plspm()

Now that we have all the necessary ingredients we are ready to run our first PLS path model
with the all-mighty function plspm(). The default usage of the function is:

plspm(Data, pathmatrix, blocks, modes = NULL)

The function plspm() has more parameters but right now we have sufficient with the Data,
path matrix, blocks and modes. The first argument Data corresponds to the dataset

27

spainfoot. The second parameter is the path matrix foot_path. Then we have the list
of blocks foot_blocks, and finally the vector of modes foot_modes. You have to respect the
order in which the first three arguments are passed to plspm(), otherwise you are going to
get a nasty error message. Enter the following command to run the PLS-PM analysis:

run plspm analysis
foot_pls = plspm(spainfoot, foot_path, foot_blocks, modes = foot_modes)

Congratulations! You just run your first PLS Path Modeling analysis in R.

Here is how you would normally do all the previous steps in a single piece of code:

rows of the path matrix
Attack = c(0, 0, 0)
Defense = c(0, 0, 0)
Success = c(1, 1, 0)

path matrix (inner model)
foot_path = rbind(Attack, Defense, Success)

add column names
colnames(foot_path) = rownames(foot_path)

blocks of indicators (outer model)
foot_blocks = list(1:4, 5:8, 9:12)

vector of modes (reflective)
foot_modes = c(, ,)

run plspm analysis
foot_pls = plspm(spainfoot, foot_path, foot_blocks, modes = foot_modes)

Initially, the definition of a pls path model for plspm() might seem a little bit elaborate,
especially for users accustomed to define their PLS path models using a graphic interface.
Switching to plspm may require thinking out of the box, but the invested effort has its
dividends. One of the immediate rewards is that you stop wasting your time in mouse clicks
and dragging objects to draw a path diagram.

plspm() output

What we get in foot_pls is an object of class "plspm". Everytime you type an object of
this class you will get a display with the following list of results:

28

what's in foot_pls?

Partial Least Squares Path Modeling (PLS-PM)

H — o

foot_pls

H## NAME

1 S$outer_model
2 $inner_model
3 $path_coefs

4 $scores

5 $crossloadings
6 $inner_summary
7 S$effects

8 SPunidim

9 $gof

10 $boot

11 $data

Bl — o

DESCRIPTION

outer model

inner model

path coefficients matrix
latent variable scores
cross—loadings

summary inner model
total effects
unidimensionality
goodness—-of-fit
bootstrap results

data matrix

You can also use the function 'summary'

How do you know what class of object is foot_pls? Use the function class() to get the

answer:

what class of object is foot_pls?

class(foot_pls)
[1] "plspm"

If you want to inspect the matrix of path coefficients contained in $path_coefs simply type

in your R console:

path coefficients
foot_pls$path_coefs

#i# Attack Defense Success
Attack 0.0000 0.0000 0
Defense 0.0000 0.0000 0
Success 0.7573 -0.2836 0

In the same manner, if you want to check the inner model results contained in $inner model,

just type:

inner model
foot_pls$inner_model

$Success

29

Estimate Std. Error t value Pr(>ltl)
Intercept -1.998e-16 0.09218 -2.167e-15 1.000e+00
Attack 7.573e-01 0.10440 7.253e+00 1.349e-06

Defense -2.836e-01 0.10440 -2.717e+00 1.466e-02

In addition, there is a summary () method that you can apply to any obect of class "plspm".
This function gives a full summary with the standard results provided in most software
for PLS Path Modeling. I won’t display the bunch of stuff that summary() provides but I
recommend you to check it out in your computer:

summarized results
summary (foot_pls)

2.2.3 Plotting results

With plspm you can visualize some results using the function plot(). By default, this
function displays the results of the inner model, that is, the path coefficients:

plotting results (inner model)
plot(foot_pls)

Attack

&0.7573

Defense Success

©20.2836

In order to check the results of the outer model, let’s say the loadings, you need to use the
parameter what (what="loadings") of the plot() function:

plotting loadings of the outer model
plot(foot_pls, what = , arr.width = 0.1)

30

Attack

loadings

Attack

/a WA \0.9379

SSA

SSH

GSH
7 0.8621
0.8408

GSA

Show me the Index

Defense
loadings

Defense

Z0.8926 \0.4837

GCH

,/ 32.8759
-0.74

CSA

CSH GCA

Success
loadings

Success

/(;.9437 \0.7755

WMH
0.8864

LRWL

%.9686

LWR WMA

I promised you that we were going to get an Index of Success for the teams in the Spanish
football league. The way in which this is achieved in PL.S Path Modeling is with the obtained
latent variable scores contained in $scores. Using the functions head () and tail() you can
take a look at the first and last n=5 rows, respectively:

show me the first scores
head (foot_pls$scores, n = 5)

##
##
#it
#it
#Hit
##

Attack Defense
Barcelona 2.6116 -1.74309
RealMadrid 1.7731 -1.13284
Sevilla -0.1123 -2.24651
AtleMadrid 1.5334 0.02392
Villarreal 0.2801 0.16761

show me the last scores
tail(foot_pls$scores, n = 5)

##
##
#it
#it
#t
##

Attack Defense

Valladolid -0.7615 0.4655
Getafe 0.4188 0.6726
Betis -0.4853 0.5492
Numancia -1.4872 1.2356
Recreativo -1.2255 0.7037

Success
2.7891
2.3246
0.5541
0.7771
0.6084

Success
-0.7458
-0.9608
-0.5288
-1.1348
-0.9807

31

Before you draw any conclusions from the obtained results, we still need to do some adjust-
ments to the model. After all, the negative path coefficient of Defense on Success does
not correspond to one of the hypotheses stated in the theory: the better the quality of the
Defense, the more Success.

We need to make a stop before getting our hands full with all the stuff that is estimated in a
PLS path model. I know we are just starting and we have yet to talk about all the provided
results by plspm() and how to interpret them. But let me end this chapter at this point
while there is still (I hope so) some free space in your brain disk because in the next chapter
we will discuss the bolts and nuts behind the PLS-PM methodology, and I guarantee you
that is going to get a little bit dense.

2.3 Reading List

e The Partial Least Squares Approach for Structural Equation Modeling by Wynne
Chin. This chapter in the book Modern methods for business research (edited by G. A.
Marcoulides), provides an interesting review of the PLS approach from a SEM stand-
point. Without heavy mathematical notation and targeted to a business and marketing
audience, Chin explains PLS-PM in an approachable way for non-statisticians. Good
reading for getting started with PLS-PM.

e A Primer for Soft Modeling by R. Frank Falk and Nancy B. Miller (1992) Published
by The University of Akron Press (Ohio), this is a short manuscript that aims to be
an introductory level textbook for PLS Path Modeling.

e The Partial Least Squares (PLS) Approach to Causal Modelling: Personal Com-
puter Adoption and Use as an lllustration by Barclay D., Higgins C. and Thompson
R. (1995). This paper, in the Special Issue on Research Methodology of Technology
Studies (Vol 2, Num 2: 285 - 809), describes an application of PLS-PM on Informa-
tion Systems without using much mathematical notation. Good introduction if you are
afraid of cryptic math equations.

32

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

Chapter 3

Setting the PLS-PM Framework

This is the chapter where I get to wear the hat of the tedious statistician. As you know, every
statistical method has an underlying theoretical background and a conceptual framework.
That’s where people list the assumptions and the conditions for the models, the data, and
the proposed solutions. It is certainly not the most exciting part of the book but if I skip its
contents all my mentors and colleagues will probably blame me for heresy. Not that I care a
lot though, but I'm sure there would be some extremely dissapointed readers for not finding
the information contained in this chapter. We’ll begin with a short opinionated section that
talks about the underlying frame of mind in PLS Path Modeling. Next, we’ll present the
formal specifications of a PLS Path Model. And then we’ll discuss how the algorithm works.

3.1 PLS-PM Frame of Mind

Before describing the PLS-PM methodology, I would like to tell you some words that you
won’t see that often in the PLS-related literature but that I consider very important to
understand the PLS-PM framework. Although most of what is here is my personal point of
view, I think it reflects enough what most PLSers feel about the principles of PLS in general,
and PLS-PM in particular.

First of all, you have to understand that PLS methods are analytical tools with algorithmic
origins aiming at solving models in a very practical way. PLS methods are not derived
through probabilistic reasoning or numerical optimization. Instead, PLS moves away from
stringent assumptions on data while maintaining a prediction-oriented focus. It is true that
it doesn’t rely on the classic inferential tradition —extensively based on assumptions about
variables and error distributions— but this does not mean that PLS lacks a solid statistical
basis. To assess how closely a PLS model “fits” the data, we use prediction error as our
measure of prediction accuracy, and resampling methods for inference purposes.

33

34

From the Structural Equation Modeling (SEM) standpoint, PLS-PM offers a different ap-
proach that doesn’t impose any distributional assumptions on the data that are hard to meet
in real life, especially for non-experimental data. When we use a covariance-based SEM
approach we are implicitly assuming that the data is generated by some “true” theoretical
model. In this scenario, the goal of covariance structure analysis (CSA) is to recover the
“true” model that gave rise to the observed covariances. Briefly, when using CSA we are
concerned with fitting a model and reproducing the observed covariances. This approach
resorts to classical theory of statistical inference and is based on a heavy use of distributional
assumptions about the behavior and personality of the data. Consequently, the analyst is
forced to move slowly; and the modeling process requires careful thought and stringent justi-
fications that more often than not end up compromising the whole analysis with the bizarre
(and sometimes contradictory) principle of the data must follow the model.

In contrast, PLS-PM does not rely on a data-generation process and causal-modeling inter-
pretations. Instead, PLS-PM treats the data “just” as a dataset. What I mean by this is
that although there can be a data-generation process in principle, it plays no direct role in
PLS-PM. The proposed models are not considered to be ground truth, but only an approx-
imation with useful predictiveness. In other words, PLS-PM assumes no model by which
the data were generated. There is only the data and nothing but the data. In this sense,
PLS-PM follows the spirit of a dimension reduction technique that we can use to get useful
insight of the data on hand. The ultimate goal in PLS-PM is to provide a practical summary
of how the set of dependent variables are systematically explained by their sets of predictors.

Besides the description of PLS Path Modeling as an alternative approach to SEM covariance
structure analysis, PLS-PM can also be regarded as a technique for analyzing a system of
relationships between multiple blocks of variables, or if you want to put it in simple terms,
multiple data tables. There are many statistical methods that we can use to study data
presented with several blocks of variables observed on the same subjects: Hort’s General-
ized Canonical Correlation Analysis, Carroll’s Generalized Canonical Correlation analysis,
Multiple Factor Analysis, etc. The idea behind all these methods is to identify or uncover a
common structure among the blocks of variables.

From the Multiple Table Analysis standpoint, PLS-PM offers a great tool for analyzing high
dimensional data in a low-structure environment. In particular, PLS-PM provides the nice
feature of being used as a method for prediction purposes. Given the fact that a lot of mutiple
table techniques are only focused on description and exploration tasks, PLS-PM can be used
for more explanatory and confirmatory purposes.

In summary, we can regard PLS-PM as a coin with the two following faces:

e PLS Path Modeling as a component-based alternative for estimating Structural Equa-
tion Models.

e PLS Path Modeling as a method for analyzing a system of linear relationships between

35

multiple blocks of variables.

3.2 PLS Path Modeling Specs

Behind every statistical method there is a conceptual framework that we use to formally
represent the “stuft” that we want to model, the way in which we want to model it, what
do we want to obtain, and how can we obtain it. PLS-PM is no exception and we need to
talk about the behind the scenes of this methodology. I find it useful to distinguish between
the formal model and the operative model. By formal model 1 mean the statement of
the theoretical model, the required assumptions, and the more or less abstract notions. By
operative I mean the computational side, that is, the proposed solution. In short: the formal
model is “what we want” while the operative model is “how to get what we want”.

3.3 Formal Model: What we want

Let’s start with the formalization of a PLS Path Model and its specifications. These are
the things that live in the abstract universe of the statistical models. You can think of the
specifications as our idealized representation of how the world looks like through the PLS-PM
glass. Keep in mind, however, that this is just a representation of how the world “could”
work, not how the world “should” work.

Every PLS Path Model is formed by two submodels: the structural or inner model, and the
measurement or outer model. The structural model is the part of the model that has to do
with the relationships between the latent variables. In turn, the measurement model is the
part of the model that has to do with the relationships of a latent variable with its block of
manifest variables.

Notation

Let’s assume that we have p variables measured on n observations (i.e. individuals, cases,
samples), and that the variables can be divided in J blocks. We will use the following notation
in the rest of the chapter:

X is the data set containing the n observations and p variables. You can think of X as
a matrix of dimension nxp

X can be divided in J (mutually exclusive) blocks Xi, X, ..., Xj
Each block Xj has K variables: Xji,..., X,k

36

Each block Xj is assumed to be associated with a latent variable LV;. Keep in mind
that LV} is just an abstract representation (i.e. unobserved).

The estimation of a latent variable, also known as score, is denoted by f‘z =Y

3.3.1 The Structural Model

First, let us talk about the specifications of the structural part in a PLS Path Model. There
are three things that you need to consider about the inner relationships:

1) Linear Relationships The first aspect of an inner model is that we treat all the
structural relationships as linear relationships. We can express the structural relations in
mathematical notation as:

LV; = By + Z B LV; + error;

1—]

The subscript ¢ of LV refers to all the latent variables that are supposed to predict LV;. The
coefficients 3;; are the path coefficients and they represent the “strength and direction” of
the relations between the response LV} and the predictors LV;.) is just the intercept term,
and the error; term accounts for the residuals.

2) Recursive Models The second thing you need to be aware of is that the system of
equations must be a recursive system. What this means is that the paths formed by the
arrows of the inner model cannot form a loop.

3) Regression Specification The third aspect about the inner relationships is something
called predictor specification which is just a fancy term to express a linear regression idea.
That’s why I prefer to call it regression specification. The idea behind this specification is
that the linear relationships are conceived from a standard regression perspective:

E(LV;|LV;) = Boi + Y _ BuLV;
i—]

What we are saying in the previous equation, in a regression sense, is that we want to
understand as far as possible the conditional expected values of the response LV determined
by its predictors LV;. The only extra assumption is:

cov(LV;, error;) =0

37

which means that a latent variable LV} is uncorrelated with the residual error;. Notice that
we are assuming nothing about the distributions of the variables and error terms. We are
just requiring the existence of first and second order moments in the variables.

3.3.2 The Measurement Model

Now it’s time to talk about the measurement or outer model. Remember this is the part
of a model that has to do with the relationships between a latent variable and its block of
manifest variables. The relevant aspect about the outer model that you should bare in mind
is that there are two main measurement options: reflective blocks and formative blocks.

la) Reflective Way The most common type of measurement is the reflective mode. In
this case the latent variable is considered as the cause of the manifest variables. That’s why
it’s called reflective because the manifest variables are “reflecting” the latent variable. If we
had a latent variable LV measured with three indicators, we could represent them with the
next path diagram (note the direction of the arrows):

X11

X12 0

X13

Figure 3.1: Path diagram of a reflective block

1b) Formative Way The other type of measurement is the formative mode. In this case
the manifest variables are considered to be the cause of the latent variable. That’s why it’s
called formative because the manifest variables are “forming” the latent variable. If we had
a latent variable LV5 measured with three indicators, we could represent them with the next
path diagram (note the direction of the arrows):

2) Linear Relationships Just like in the inner model, the outer model relationships are
also considered to be linear. In mathematical notation, we have that:

Xk = Noji + N\jp LV + errory, Reflective

38

X1

X23

Figure 3.2: Path diagram of a formative block

LV; = Xoj + N\jx Xk + error; Formative

The coefficients Aj; are called loadings; A is just the intercept term, and the error terms
account for the residuals. Here I'm doing some notation abuse but it’s to keep things simple.

3) Regression Specification In addition, we also have the concept of predictor speci-
fication or regression specification: the linear relationships are conceived from a standard
regression perspective:

E(Xjx|LV;) = Aojr + Ajr LV Reflective
E(LV}| Xjk) = Aoj + Ajr X Formative

What we are saying in the previous equations in a regression sense is that we want to
understand as far as possible the conditional expected values of the response variables (either
manifest or latent) in terms of the predictor ones.

3.3.3 The Weight Relations

There’s one last thing belonging to the specifications of a PLLS Path Model that we need to
mention: the weight relations. So far we’ve talked about the theoretical specifications that
give formal shape to the inner and the outer models. But there’s one piece that is kind of
in the air. Do you know what piece are we referring to? The latent variables! All the linear
equations and the considered assumptions depend on the latent variables LV}, but the issue
is that they are virtual entities. I don’t know if you remember what I said when I defined the
notation but I clearly stated that: Keep in mind that LV} is just an abstract representation.
Maybe I wasn’t clear enough but what I meant was that the latent variables LVs are like
ghost variables. Unless we have a way to materialize our abstract latent variables, all the
previous specifications are worthless. But fear not. Thanks to the weight relations we can
bridge the gap between the virtual LVs and the material LVs.

39

In PLS-PM, latent variables are estimated as a linear combination of their manifest variables.
Moreover, an estimated LVj is called a score, which we’ll denote as Y:

LV; =Y; =Y wp Xy,
k

In fact, this is the very reason why PLS-PM is referred to as a component-based approach
because latent variables are calculated as a weighted sum of their indicators, something
similar to what is done in principal component analysis.

It is important not to confuse the role that plays the abstract LV, with the role that plays
the score Y;. Yes, they both refer to the same construct, but while the former is used for
theoretical reasons, the later is used for practical purposes. I know this can muddle you
up but don’t worry. It doesn’t matter if a latent variable is measured in a reflective or a
formative way; a latent variable is calculated as a linear combination of its block of indicators.

3.4 Operative Model: How to get what we want

So far we’ve been discussing the specifications behind any PLS Path Model. Remember
that these specifications are an idealized representation of the world looked at through the
PLS-PM glass. In sum, we’ve only talked about “what we want”; now we need to discuss
the operative side which is basically: “how to get what we want”.

The basic idea of PLS Path Modeling is to combine the manifest variables of each block to
form an estimated (proxy) latent variable. Once the latent scores are calculated, we proceed
with the estimation of the path coefficients and the loadings. That’s the overall route to
follow. What we need is to define the way in which we are going to calculate things (the
scores, the path coefficients, and the loadings).

PLS-PM Algorithm Overview

PLS Path Modeling follows a sequential procedure that can be divided in three major stages:
Stage 1: Get the weights to compute latent variable scores
Stage 2: Estimating the path coefficients (inner model)
Stage 3: Obtaining the loadings (outer model)

The first stage consists of obtaining the weights that will be used to get the scores of the

latent varibles. The second stage has to do with estimating the path coefficients of the inner
model. And the third stage involves the computation of the loadings (outer model).

40

Of all the stages, the first one is the key part of the PLS-PM methodology. By the way, this is
also the tricky part. This stage is an iterative process in which the ultimate goal is to get the
weights for the famous weight relations. This is the heart of the PLS-PM methodology and
it allows us to materialize the ghostly-abstract latent variables. Once we pass the first stage,
the next two stages are practically a piece of cake. The estimation of the path coefficients
is just a matter of running as many least squares regressions as structural equations in the
model. In turn, obtaining the loadings is just a matter of computing simple correlations.

In its purest essence, the PLS-PM algorithm is nothing more than a series of simple and
multiple ordinary least squares regressions. The slippery part comes with the multiple options
for deciding what kind of regression to apply, and some extra input settings we need to
consider. From my personal experience, this part is perhaps the main source of confusion
and intimidation for most beginners.

Auxiliary Model

For convenience, let’s use a simple model to make things a little less abstract. The complete
model is illustrated in the following diagram:

X11

X31
X13
X21

X33
X23

Figure 3.3: Diagram of our auxiliary model

We are going to use a model with three latent variables: LV;, LV5, and LV3. Each latent
variable is associated with three manifest variables in the following form: LV; and LVj are
reflective blocks:

X = A LVi+error k=1,2,3

41

Xsp = A LV +error k=1,2,3
In turn, LV5 is a formative block:

LVy = Z NjgXop +error k=1,2,3
k

For the structural relationships we are going to suppose two equations. One inner relationship
in which LV, depends on LV;:
LVy = B LV7 + error

The other inner relationship in which LV3 depends on LV; and LV5:

LVy = (831 LVy + B3 LV, + error

Additionally, we will assume that all the variables are standardized (mean=0, var=1), in this
way we get rid of the annoying constant terms s and Ajs.

3.4.1 Stage 1: Iterative Process

The first stage of the PLS-PM algorithm involves the computation of the weights to get the
scores of the latent variables. Please keep in mind that our final PLS-PM destination is to
get estimates of both the latent variables and the parameters (coefficients and loadings). The
iterative procedure of the PLS algorithm, using technical jargon, proceeds as follows:

e Start: Initial arbitrary outer weights (normalized to obtain standardized LVs)

Step 1: Compute the external approximation of latent variables

Step 2: Obtain inner weights

Step 3: Compute the internal approximation of latent variables

Step 4: Calculate new outer weights

Repeat step 1 to step 4 until convergence of outer weights

If you are not familiar with the PLS argot, I bet you understand almost nothing from the
previous pseudo-code of the iterative stage. There’s a bunch of fanciful terminology such as
outer weights, normalized, standardized, external approzimation, inner weights, and internal
approzimation. 1 know all these terms may not make too much sense to you right now but
you'll get them in the next pages (or so I hope).

First of all: if there’s something that you need to have room in your head for is that a latent
variable is calculated as a weighted sum of its manifest variables. This is the overriding

42

principle that you should always remember. Repeat after me: latent variable scores are
calculated as weighted sums of their indicators. Good. In mathematical notation the previous
sentence is expressed as:

LV, =Yj =Y wi X
k

The weights w;;, to form the weighted average), w;; X receive the especial name of outer
weights. Why outer? Because there is another type of weights, called the inner weights,
that also appear in the iterative procedure. We’ll talk about them in a second. The other
thing that you need to know is that anything that has to do with the outer (measurement)
model is referred to as external or outside. Likewise, anything that has to do with the inner
(structural) model is referred to as internal or inside.

Step 0: Initial arbitrary outer weights

We start the iterative process by assigning “arbitrary” values to the outer weights. To keep
things simple, we can initialize all weights equal to one: wj; = 1. Taking our auxiliary model
into account this implies creating three vectors wy, with all components equal to 1:

le - (/J)ll = 1711)12 = 1721)13 - 1)
‘XIQ = (U~)21 = 1,U~)22 = 17/&)23 = 1)
‘X’3 = ('11)31 = 1711)32 = 17?1}33 = 1)

Actually, the tilde weights w0, are not exactly the outer weights. We need to apply a little
transformation that involves normalizing them so that the resulting scores have unit variance.

Step 1: External estimation

Once we have the tilde weights wy, we get the external estimation which consists of expressing
a latent variable as a weighted sum of its indicators. In matrix notation we have

Vi, x Xpwy, k=1,2,3
Decomposing the formula for each LV we get the following:
}/1 X 1X11 —+ 1X12 + 1X13

Yé X 1X21 + 1X22 + 1X23
Y3 X 1X31 + 1X32 + 1X33

43

As you can tell, I'm using the proportional symbol o to indicate that each score Y; depends
on its manifest variables Xj; although there’s something missing. To be precise with the
formula of the scores we need to use the following equation:

Y=+ > wX
k

Ok, now it seems that everything is getting fuzzy. Why is there a sign £+ and what is f;?
The symbol =+ is there to represent a weird phenomenon that may occur when calculating
scores: the mysterious sign ambiguity. The term f; is simply a scalar (a number) that makes
Y; to be standardized. The phenomenon of the sign ambiguity has to do when not all the
indicators of a construct share the same correlation sign. It could be the case that instead of
having all indicators positively correlated among them, there might be at least one of them
that is negatively correlated. So to avoid problems deciding whether to use a positive or
negative sign, we use a democratic approach to solve the sign ambiguity. The solution is very
simple: choose the sign so that the majority of the Xj; is positively correlated with Y;

sign | Y _ sign {cor(X, Y;)}
k

The standardized LVs are finally expressed as:
Y=Y wiXi
k

where the weights w;;, are the “definite” outer weights. In our example we have:
Y1 = wii X1 + w2 X2 + w13 Xy3

Yo = wo1 Xoy + waaXog + wazXoz

Y3 = w31 X371 + w3 X390 + w33 X33

Step 2: Obtain Inner weights

Once we have the initial scores of the latent variables, we put our focus on the inner model.
Remember that the inner model takes into account only the relationships between latent
variables. The goal in this step is to re-calculate scores but this time in a different way.
Instead of getting the score of a latent varibale as a linear combination of its indicators, we
will get a score as the linear combination of its associated latent variables. In other words, the
connections among constructs in the inner model are taken into account in order to obtain

44

a proxy of each latent variable calculated this time as a weighted aggregate of its adjacent
LVs. The internal estimation of LV, denoted by Z; is defined by:

Zj = Z Gi]‘Y;‘

1—>]

The double-headed arrow <—> means that LV] is associated or connected with LV;. If there
is an arrow between LV} and LV; (it doesn’t matter which is the dependent and which one
the independent), then LV; must be taken into consideration for calculating Z;. Because now
we are dealing with the inner model, the weights e;; for this special combination are called
mner weights.

The seemingly complication for PLS rookies comes with the various options or schemes that
we have to obtain the inner weights e;;. There are three options to calculate the inner weights:

e Centroid scheme
e Factor scheme

e Path scheme

Centroid scheme This scheme only considers the sign direction of the correlations between
an LV and its adjacent (neighboring) LVs. The inner weights are defined as:

sign [cor(Y;,Y:)] LV;, LV, adjacents
6]'2‘ = R
0 otherwise
This option does not consider the direction nor the strength of the paths in the structural
model. So in theory, some problems may be present when a correlation is close to zero,
causing a sign changing from +1 to -1 during the iterations.

Factor scheme This scheme uses the correlation coefficient as the inner weight instead of
using only the sign of the correlation. The inner weights are defined as:
. _{ cor(Y;,Y;) LV;, LV; adjacents }
ji

o 0 otherwise

This scheme considers not only the sign direction but also the strength of the paths in the
structural model.

Path scheme In this case the LVs are divided in antecedents (predictors) and followers
(predictands) depending on the cause-effects relationships between two LVs. An LV can be
either a follower, if it is caused by another LV, or an antecedent if it is the cause of another

45

LV. If LV; is a follower of LV; then the inner weight is equal to the correlation between Y; and
Y;. On the other hand, for the antecedents LV; of LV; the inner weights are the regression
coefficient of Y; in the multiple regression of LV} on the LV/s associated to the antecedents of
LV;. The path weighting scheme has the advantage of taking into account both the strength
and the direction of the paths in the structural model. However, this scheme presents some
problems when the LV correlation matrix is singular.

In practice, choosing one weighting scheme in particular over the others has little relevance
on the estimation process. It has been observed that they do not influence the results signif-
icantly. However, in a more theoretical level, they are of a great importance to understand
how PLS-PM can be applied to different techniques of multiple table analysis.

Step 3: Internal Approximation

One we have the inner weights, we compute the internal estimation Z; as:

Zj = Z Gi]‘Y;‘

14—>]
In our auxiliary example we would have:

Zy = Z einY; = eaYs +e31Y3

i1

Ly = Z einY; = e12Y1 + e3Ys

2

Z3 = Z ei3Y; = e13Y] + ex3Ys

3

Step 4: Updating Outer weights

Once the inside approximation is done, the internal estimates Z; must then be considered
with regard their indicators. This is done by updating the outer weights. There are basically
two ways of calculating the outer weights w;;: (1) mode A, and (2) mode B. Each mode
corresponds to a different way of relating the MVs with the LVs in the theoretical model.
Mode A is used when the indicators are related to their latent variable through a reflective
way. Instead, mode B is preferred when indicators are associated with their latent variable
in a formative way

46

Mode A In reflective blocks (mode A) we obtain the outer weights w;, with simple regres-
sions of each indicator Xji, Xjo, ..., Xj; on their latent score Y;

Wik = (Y/Y5) 7Y X

Mode B In formative blocks (mode B) we obtain the vector of outer weights w; with a
multiple regression of Y; on X;
W = (X)X,

Check for convergence

In every iteration step, say S = 1,2,3,..., convergence is checked comparing the outer
weights of step S against the outer weights of step S — 1. One common way to check
convergence is |szk_1 — w?,| < 107° as a convergence criterion.

3.4.2 Stage 2: Path Coefficients

The second stage of the algorithm consists of calculating the path coefficient estimates,
Bji = Bj;. The structural coefficients are estimated by ordinary least squares in the multiple
regression of Y; on the Y;’s related with it:

Yi=) B
11—

The least squares solution is:
Bji = (YY) Y]Y;

3.4.3 Stage 3: Loadings

The third stage of the algorithm consists of calculating the loadings. For convenience and
simplicity reasons, loadings are preferably calculated as correlations between a latent variable
and its indicators

—

ik = cor(Xk, Y)

3.4.4 Wrapping up

The goal of PLS is to obtain score values of latent variables for prediction purposes. The
idea is to calculate estimates of latent variables as linear combinations of their associated

A7

indicators using a special linear combination. We look for a linear combination in such a
way that the obtained latent variables take into account the relationships of the structural
and the measurement models in order to maximize the explained variance of the dependent
variables (both latent and observed variables).

The core of the PLS algorithm is the calculation of the weights (for the linear combina-
tion) required to estimate the latent variables. The weights are obtained based on how the
structural and the measurement model are specified. This is done by means of an iterative
procedure in which two kinds of approximation for the latent variables are alternated until
convergence of weight estimates. These two types of approximation, called the inside approx-
imation and the outside approximation, have to do with the inner relations and the outer
relations, respectively.

The algorithm begins with arbitrary initial weights used to calculate an outside approxima-
tion of the latent variables, that is, initial weights are given in order to approximate the LVs
as linear combinations of their MVs. Then, the inner relations among LVs are considered
in order to calculate the inside approximations, having the option of choosing between three
possible scenarios, called weighting schemes, to perform this approximation: (1) centroid,
(2) factor, and (3) path scheme. Once the inside approximations are obtained, the algorithm
turns around to the outer relations when new weights are calculated considering how the
indicators are related to their constructs: by mode A (reflective), or by mode B (formative).
Mode A implies simple linear regressions while mode B implies multiple linear regressions.
The simple and/or multiple regressions coefficients are then used as new weights for an out-
side approximation. The process continues iteratively until convergence of the weights is
reached.

After convergence of the outer weights, and once the latent variables are estimated, the
parameters of the structural and the measurement models can be obtained. The path coeffi-
cients are calculated by ordinary least squares regressions between LVs. There are as many
regressions as endogenous latent variables. The loading coefficients, are also estimated by
least squares regressions but taking into account the kind of mode to be used (reflective or
formative).

3.5 Reading List

e PLS path modeling by Michel Tenenhaus, Vincenzo Esposito Vinzi, Yves-Marie Chatelin,
and Carlo Lauro (2005). This paper in the journal Computational Statistics & Data
Analysis (48: 159-205) is perhaps the mandatory reference for anyone interested in the
specifications and computational aspects of PLS-PM with a recent publication.

e Partial least squares by Herman Wold (1985). This entry in the Encyclopedia of

48

Statistical Sciences, Vol 6: 581-591 is one of the classic PLS-PM references for anyone
who wants to check pne of the original sources of Herman Wold.

Systems under indirect observation: causality, structure, prediction. Vol Il edited
by Karl Joreskog and Herman Wold (1982). The first chapter by Herman Wold is
also another classic reference dedicated to explain the Soft Modeling methodology of
PLS-PM.

Model Construction and Evaluation When Theoretical Knowledge is Scarce: The-
ory and Application of Partial Least Squares by Herman Wold (1980). This paper,
in the book Fwvaluation of Econometric Models (edited by Kmenta and Ramsey, pp:
47-74), is not very cited but is worth reading in order to understand Wold’s perspective
on model building, as well as the basic principles behind PLS Path Modeling.
Available at:

http://www.nber.org/chapters/c11693

Latent Variables Path Modeling with Partial Least Squares by Jan-Bernd Lohmoller
(1989). This purple-cover book is another official reference for PLS-PM, although
this is definitely not a text for people with phobia to heavy math notation. The
best thing about this book is that it presents a detailed and wide-ranging account
of the capabilities of PLS-PM. It covers all the statistical, modeling, algorithmic and
programming aspects of the PLS methodology. The worst thing: is not user (reader)-
friendly. Written in his very particular Lohmollerian style, it can be extremely hard to
decipher. It took me several readings to start grasping the notions and connecting the
dots. Not an easy going text but worth it if you are planning to open new paths in the

PLS field.

http://www.nber.org/chapters/c11693

Chapter 4

Interpreting PLS-PM Results

In chapter 2 we saw a basic PLS Path Modeling application using plspm with the Spanish
Football Success Index. As you will recall, our model is based on a very simple theory:

the better the quality of the Attack, as well as the quality of the Defense, the

more Success.

Figure 4.1: Diagram depicting the structural part of the Success model

Defining a PLS path model and applying the function plspm() are just the first steps of
a PLS Path Modeling analysis. The next thing to do is even more important: examining
the obtained results and evaluating the quality of the model. In this chapter we are going
to review some general guidelines for applying PLS-PM, and we will discuss the bells and
whistles of how to interpret the output and diagnose the results.

49

50

4.1 Reminder of Our Success Index Model

As mentioned in the last two chapters, a PLS path model is comprised by two submodels:
the structural model also known as inner model and the measurement model also known as
outer model. The inner model is the part of the model that has to do with the relationships
between latent variables. The outer model is the part of the model that has to do with the
relationships between each latent variable and its block of indicators. The graphical display
of the complete Success Model is shown in the next diagram:

GSH

SSH
WMH

SSA
D .
LWR

GCH
LRWL

GCA

Defense
CSH
CSA

Figure 4.2: Path Diagram depicting our simple model

4.1.1 PLS-PM with plspm

I'm assuming that you already installed the package plspm as described in Chapter 1. The
data for our model comes with plspm under the name spainfoot. Remember that you need
to use the function library() to load the package in your current R session. To get access
to the data, simply load it with the function data():

load package plspm
library(plspm)

load data spainfoot
data(spainfoot)

51

4.1.2 The function plspm()

The main function of the plspm package is the function with the same name plspm(). This
function has 12 arguments that can be broken down in three main sets according to their
purpose. The first set has to do with the parameters that you use to define a PLS Path
Model. The second set of parameters are related with the PLS algorithm. The last group of
parameters are additional options like validation and recovering the data matrix used in the
computations:

e Parameters to define the PLS Path Model
Data (where you have the data)
path matrix (defines the inner model)
blocks (list defining the blocks of variables of the outer model)
scaling (list defining the measurement scale of variables for non-metric data)
modes (vector defining the measurement mode of each block)
e Parameters related to the PLS-PM algorithm
scheme (inner path weighting scheme)
scaled (indicates whether the data should be standardized)

tol (tolerance threshold for checking convergence of the iterative stage in the PLS
algorithm)

maxiter (maximum number of iterations)

plscomp (indicates the number of PLS components —per block— when handling
non-metric data)

e Additional parameters
boot.val (indicates whether bootstrap validation must be performed)
br (number of bootstrap resamples)
plsr (indicates whether path coefficients should be calculated by pls regression)

dataset (indicates whether the data matrix should be retrieved)

Even though there are 14 parameters to play with, most of the times you would probably
need to tweak just a few of them. In fact, the most important ingredients are the first three
arguments: Data, path matrix, and blocks. These ingredients don’t have default settings
so you must provide values for each of them. The rest of parameters come with predefined
values which you can change depending on your needs and preferences. To see the specific

52

details of each parameter you can consult the technical documentation with the function
help()

information about the function plspm()
help(plspm)

Preparing the ingredients for plspm()

A PLS path model has to be specified with the mqndqtory arguments Data, path matrix,
and blocks. In addition, it is recomended to specify the argument modes as well. Just like
we did in chapter 2, here’s how the ingredients for plspm() can be prepared to cook our PLS
path model:

Inner Matrix: This is the inner model defined in matrix format

rows of the path matrix
Attack = c(0, 0, 0)
Defense = c(0, 0, 0)
Success = c(1, 1, 0)

creating the matrix by binding rows
foot_path = rbind(Attack, Defense, Success)

add column names (optional)
colnames(foot_path) = rownames(foot_path)

let's see it

foot_path

#it Attack Defense Success
Attack 0 0 0
Defense 0 0 0
Success 1 1 0

Remember that you should read this matrix by “columns affecting rows”. The one in the
cell 3,1 means that Attack affects Success. The zeros in the diagonal of the matrix mean
that a latent variable cannot affect itself. The zeros above the diagonal imply that PLS-PM
only works wiht non-recursive models (no loops in the inner model).

Blocks List: This is a 1ist to tell plspm() what variables of the data set are associated
with what latent variables:

53

list indicating what variables are associated with what latent
variables
foot_blocks = list(1:4, 5:8, 9:12)

Note that foot_blocks contains three elements, one per each block of variables (i.e. each
latent variable). Each element is a vector of indices. This means that Attack is associated
with the first four columns of the data set. Defense is formed by the variables in columns 5
to 8. And Success is defined with variables in columns 9 to 12.

Modes: By default, plspm() assumes that the measurement of the latent variables is in
reflective mode (mode A). However, I strongly recommend you to explicitly define a vector
of modes. This is done by using a character vector with as many letters as latent variables:

all latent variables are measured in a reflective way
foot_modes = rep(, 3)

Running plspm()

With our four main ingredients in place, we can apply the function plspm() to get our PLS
Path Model. Putting all the pieces together, here’s how you would normally do it in a single
piece of code:

rows of the path matrix
Attack = c(0, 0, 0)
Defense = c(0, 0, 0)
Success = c(1, 1, 0)

inner model matrix
foot_path = rbind(Attack, Defense, Success)

add column names
colnames(foot_path) = rownames(foot_path)

blocks of indicators (outer model)
foot_blocks = list(1:4, 5:8, 9:12)

vector of modes (reflective)
foot_modes = rep(, 3)

run plspm analysis
foot_pls = plspm(spainfoot, foot_path, foot_blocks, modes = foot_modes)

54

4.2 Handling PLS-PM results

Defining a pls path model and applying the function plspm() to estimate the parameters
is probably the easiest part. It may take you some time to get used to working with the
path matrix, the blocks list and the vector modes. R has different ways —and functions—
to define matrices, lists and vectors, so I encourage you to look for documentation related
with these types of objects. From what I've seen with other people, after runing a couple
of examples I bet you will feel very comfortable playing with plspm(). The real challenge
has to do with handling the results provided not only by plspm but by any other PLS Path
Modeling software.

We know that a PLS path model consists of a structural or inner model and a measurement
or outer model. You always have to keep this in mind because the assessment of a PLS path
model requires the analysis and interpretation of both the structural and the measurement
models. By the way, there are a lot of things to examine in a PLS path model and the
diagnose follows a two-stage process: (1) the assessment of the measurement model, and (2)
the assessment of the structural model. 1 strongly advice you to respect this order because we
must first check that we are really measuring what we are assuming to measure, before any
conclusions can be drawn regarding the relationships among the latent variables. Although
you could skip the checking order for exploratory purposes, this sequence has to be respected
when carrying out a complete assessment in order to prepare a report with the main results.

List of results

After applying the plspm() function we can check the content of the object foot_pls. If you
type foot_pls you'll see the list of results contained in it:

what's in foot_pls?

foot_pls

Partial Least Squares Path Modeling (PLS-PM)
-
NAME DESCRIPTION

1 S$outer_model outer model

2 $inner_model inner model

3 $path_coefs path coefficients matrix
4 $scores latent variable scores
5 $crossloadings cross-loadings

6 $inner_summary summary inner model

7 $effects total effects

8 SPunidim unidimensionality

9 $gof goodness-of-fit

5}

10 $boot bootstrap results
11 $data data matrix
B

You can also use the function 'summary'

The important thing to keep in mind is that foot_pls is an object of class "plspm". So
everytime we type an object of this class we will get a display with the list of results. In
addition, there is a summary() method that you can apply to any obect of class "plspm".
This function gives a full summary with the standard results provided in most software for
PLS Path Modeling. I won’t display the output provided by summary() but here’s how you
would use it:

summarized results
summary (foot_pls)

4.3 Measurement Model Assessment:
Reflective Indicators

It is important to differentiate the assessment of the measurement model depending on
whether the indicators’ nature is reflective or formative. While the evaluation of forma-
tive blocks can be relatively straightforward, the same cannot be said about reflective blocks.
The evaluation of reflective indicators has its roots in the so-called Test Theory developed in
psychology, more specifically in the branch of psychometrics. As you may know, psychome-
trists spend a lot of time designing tests that are full of tricky questions, multiple choices,
and random exercises. They also have created a full vocabulary packed of terms like reliabil-
ity, validity, consistency, reproducibility, accuracy, and precision, that are heavily applied in
Structural Equation Modeling in general, and to a lesser extent in PLS-PM.

This is the reason why, when people use PLS-PM as an approach for Structural Equation
Modeling, you always stumble upon a specialized terminology like content validity, indicator
reliability, construct reliability, convergent validity, and discriminant validity. Everytime I
see or hear any of those concepts I get chills so I'm not going to describe them. Talk to
your psychometrist friend and see whether she is able to explain you in plain language the
meaning of all that gibberish.

4.3.1 All for one and one for all

To assess the quality of a reflective block we need to understand the key ideas behind a
reflective measurement model: it is supposed that reflective indicators are measuring the

56

same underlying latent variable, hence they are reflections of the construct. On one hand,
reflective indicators need to have strong mutual association. In other words, they need to
have strong ties. If one of them goes up, the rest will also increase their values. If one of them
goes down, the rest will decrease their values too. Shortly, they will be highly correlated.
On the other hand, reflective indicators need to get along with its latent variable; they
must show sings of membership and belonging to one and only one latent variable: they need
to be loyal to its construct. If one indicator loads higher on another construct, this could be
evidence of treason. We don’t want traitor indicators, we want loyal indicators. Let’s put
it simply: good reflective indicators follow the three musketeers’” motto Unus pro omnibus,
omnes pro uno (all for one and one for all).

Basically, we must evaluate three aspects of reflective measures:
e Unidimensionality of the indicators
e Check that indicators are well explained by its latent variable

e Assess the degree to which a given construct is different from other constructs

4.3.2 Unidimensionality of indicators

When you have a block of reflective indicators it is supposed that those indicators will reflect,
to some extent, the latent variable that they are associated with. Actually, it is assumed
that the latent variable is the cause of its indicators. This means that if a construct changes
(increases or decreases), then the indicators associated with it will also change in the same
direction. Thus, it is logical to suppose that the indicators are closely related in such a way
that they are in one dimensional space.

Think of it in a geometrical sense. If you have a bunch of variables that are supposed to be
measuring some aspect of the same thing (the same latent variable) you would expect those
variables to roughly point in the same direction. This is what unidimensionality implies. The
reflective indicators must be in a space of one dimension since they are practically indicating
the same latent variable.

In PLS-PM we have three main indices to check unidimensionality:
e (Calculate the Cronbach’s alpha
e (Calculate the Dillon-Goldstein’s rho

e Check the first eigenvalue of the indicators’ correlation matrix

These metrics are provided by plspm() and they are found under the name $unidim. To
check the blocks” unidimensionality results simply type:

d7

unidimensionality
foot_pls$unidim

Hit Mode MVs C.alpha DG.rho eig.lst eig.2nd
Attack A 4 0.8906 0.92456 3.017 0.7923
Defense A4 0.0000 0.02602 2.393 1.1753
Success A4 0.9165 0.94233 3.217 0.5370

This is a table with the unidimensionality metrics for each block of indicators. The first
column shows the type of measurement. In this case all the blocks are reflective. The second
column indicates the number of manifest variables in each block (4 in our example). The
third column contains the Cronbach’s alpha, the fourth column is the Dillon-Goldstein’s rho,
and the fifth and sixth columns are the first and second eignevalues, respectively.

Cronbach’s alpha

The Cronbach’s alpha is a coefficient that is intended to evaluate how well a block of indicators
measure their corresponding latent construct. You can think of it as an average inter-variable
correlation between indicators of a reflective construct. If a block of manifest variables is
unidimensional, they have to be highly correlated, and consequently we expect them to have a
high average inter-variable correlation. It is important to keep in mind that the computation
of the Cronbach’s alpha requires the observed variables to be standardized and positively
correlated.

cronbach's alpha
foot_pls$unidim[, 3, drop = FALSE]

#it C.alpha
Attack 0.8906
Defense 0.0000
Success 0.9165

In our example, the Attack block has an alpha of 0.89, Defense has an alpha of 0.00, and
Success has an alpha of 0.91. As a rule of thumb, a cronbach’s alpha greater than 0.7 is
considered acceptable. According to this rule Attack and Success are good blocks, but not
Defense. This provides us a warning sign that something potentially wrong is occurring with
the manifest variables of Defense.

Dillon-Goldstein’s rho

Another metric used to assess the unidimensionality of a reflective block is the Dillon-
Goldstein’s tho which focuses on the variance of the sum of variables in the block of interest.

o8

As a rule of thumb, a block is considered as unidimensional when the Dillon-Goldstein’s rho
is larger than 0.7. This index is considered to be a better indicator than the Cronbach’s
alpha because it takes into account to which extent the latent variable explains its block of
indicators.

dillon-goldstein rho
foot_pls$unidim[, 4, drop = FALSE]

H#it DG.rho
Attack 0.92456
Defense 0.02602
Success 0.94233

Note that Attack and Success have rho’s values greater than 0.9. In contrast, the construct
Defense shows a very small value of 0.026, which again is a sign that there is an issue with
the indicators in this block.

First eigenvalue

The third metric involves an eigen-analysis of the correlation matrix of each set of indicators.
The use of this metric is based on the importance of the first eigenvalue. If a block is
unidimensional, then the first eigenvalue should be “much more” larger than 1 whereas the
second eigenvalue should be smaller than 1.

eigenvalues
foot_pls$unidim[, 5:6]

#it eig.1lst eig.2nd
Attack 3.017 0.7923
Defense 2.393 1.1753
Success 3.217 0.5370

In other words, the evaluation of the first eigenvalue is performed in regards to the rest of
the eigenvalues in order to have an idea of how unidimensional is a block of indicators.

Houston we have a problem

According to the metrics in the unidimensionality results, there is an issue with the Defense
block. To see what’s happening we can plot the loadings using the function plot () by setting
the argument what="loadings":

plotting loadings

plot(foot_pls, what =)

59

Attack Defense Success
loadings loadings loadings
Attack Defense Success
0.9379 0.4837 0.7755
/6.8263 & %0.8926 \ /6.9437 X
SSA GSH CSA GCH LRWL WMH
W .8621 V/ .8759 W X).8864
0.8408 -0.74 0.968
SSH GSA CSH GCA LWR WMA

As you can see from the plot, the indicators CSA and CSH have red arrows indicating that
they have negative loadings (negative correlations). This can be confirmed if we check the
outer model results contained in $outer model:

outer model results
foot_pls$outer_model

#it name block weight loading communality redundancy
1 GSH Attack 0.3366 0.9379 0.8797 0.0000
2 GSA Attack 0.2819 0.8621 0.7432 0.0000
3 SSH Attack 0.2892 0.8408 0.7070 0.0000
4 SSA Attack 0.2396 0.8263 0.6828 0.0000
5 GCH Defense -0.1087 0.4837 0.2339 0.0000
6 GCA Defense -0.3915 0.8759 0.7672 0.0000
7 CSH Defense 0.3274 -0.7464 0.5571 0.0000
8 CSA Defense 0.4035 -0.8926 0.7968 0.0000
9 WMH Success 0.2309 0.7755 0.6014 0.5145
10 WMA Success 0.3030 0.8864 0.7856 0.6722
11 LWR Success 0.2821 0.9686 0.9382 0.8027
12 LRWL Success 0.2958 0.9437 0.8906 0.7620

To get those results associated to the block Defense, simply use the subset() function
indicating the selection of block == "Defense"

Defense outer model results
subset (foot_pls$outer_model, block ==)

60

name block weight loading communality redundancy
5 GCH Defense -0.1087 0.4837 0.2339 0
6 GCA Defense -0.3915 0.8759 0.7672 0
7 CSH Defense 0.3274 -0.7464 0.5571 0
8 CSA Defense 0.4035 -0.8926 0.7968 0

Note that we have a weird phenomenon with the signs of the outer weights and the signs of

the loadings. You can visualize the weights by using plot() and specifying the argument

what = "weights" like this:

plotting weights

plot(foot_pls, what =)
Attack Defense Success
weights weights weights
Attack Defense Success
0.3366 \,—0.1087 0.2309
%.2396 \ /0.4035 » %.2958 X
SSA GSH CSA GCH LRWL WMH

0.2819 \-0.3915 0.303
i[b.ZSQA 3274 AO.ZBZ]AL

SSH GSA CSH GCA LWR WMA

We have mixed signs: half of the Defense indicators are positive weights while the other half
have negative weights. This is the cause that the Cronbach’s alpha and the Dillon-Goldstein’s
rho are inadequate. Remember that Cronbach’s alpha require all indicators in reflective block
to be positively correlated. Moreover, this is also the cause that the path coefficient between
Defense and Success is negative. This is contradictory because it would mean that the
more Quality Defense, the less Success. In fact, this “anomaly” of inverted and mixed signs
of indicators is not that uncommon.

Even though GCH and GCA have to do with Defense, they are measuring “lack” of Defense.
If a team has high values of GCH and GCA, it means that they conceded a lot of goals, hence
having a poor defense quality. Briefly, GCH and GCA are pointing in the opposite direction.
We need to do something to try to fix this problem. The solution is to change the sign of
GCH and GCA so that instead of conceded goals they reflect “avoided goals”.

61

Changing Defense indicators

One way to have modified the variables GCH and GCA with negative signs is by adding two
more variables (columns) to the data frame spainfoot. This can be done like this:

add two more columns NGCH and NGCA

spainfoot$NGCH = -1 * spainfoot$GCH
spainfoot$NGCA = -1 * spainfoot$GCA

We are adding a new column NGCH to spainfoot calculated as a negative GCH. This repre-
sents Negative Conceded Goals at Home. Likewise, we are adding another new column NGCA
(Negative Goals Conceded Away) calculated as a negative GCA. I know that negative goals
conceded at home and negative goals conceded away are not avoided goals, but the idea is to
have indicators that are positively related to the Defense construct. Use either the function
names () or the function colnames() to check the names of the variables in the data:

check column names
names (spainfoot)

[1] IIGSHII IIGSAII I|SSH|I |ISSAII IlGCHll IIGCAH IICSHII IICSAII IleHII
[10] lleAll IleRII IILRwLII |IYCII I|RCII IINGCHH IINGCAH

With the updated data, we have to re-run the plspm() function and we also have to modify
the list of blocks with the new indicators NGCH and NGCA. You can define the list of blocks
either with numeric vectors or with string vectors. Here’s how to define the list of blocks
under both options:

new list of blocks (with column positions of variables)
new_blocks_pos = list(1:4, c(15,16,7,8), 9:12)

new list of blocks (with names of variables)
new_blocks_str = list(

C() >))’
C()) s):
C()) s))

Let’s apply plspm() using the list of blocks with the names of the indicators new_blocks str,
and plot the obtained loadings:

re-apply plspm

foot_pls = plspm(spainfoot, foot_path, new_blocks_str, modes = foot_modes)

plot loadings
plot(foot_pls,)

62

Attack Defense Success
loadings loadings loadings
Attack Defense Success
0.938 0.4837 0.7755
?6.8263 & /6.8926 & /6.9437 x
SSA GSH CSA NGCH LRWL WMH
W .8621 W .8759 W .8864
0.8408 0.7464 0.9686
SSH GSA CSH NGCA LWR WMA

Figure 4.3: Changed Loadings

Now we are talking! As you can tell, all the indicators in Defense have blue arrows. If we
check again the unidimensionality we should see better results:

unidimensionality
foot_pls$unidim

#Hit Mode MVs C.alpha DG.rho eig.1lst eig.2nd
Attack A4 0.8906 0.9246 3.017 0.7923
Defense A4 0.7718 0.8549 2.393 1.1753
Success A4 0.9165 0.9423 3.217 0.5370

4.3.3 Loadings and Communalities

The next thing to examine are the loadings and the communalities that are contained in
$outer_model. The loadings are correlations between a latent variable and its indicators. In
turn, communalities are squared correlations.

loadings and communalities
foot_pls$outer_model

#it name block weight loading communality redundancy
1 GSH Attack 0.3366 0.9380 0.8798 0.0000
2 GSA Attack 0.2819 0.8621 0.7432 0.0000

63

3 SSH Attack 0.2893 0.8408 0.7070 0.0000
4 SSA Attack 0.2396 0.8263 0.6828 0.0000
5 NGCH Defense 0.1088 0.4837 0.2339 0.0000
6 NGCA Defense 0.3914 0.8759 0.7672 0.0000
7 CSH Defense 0.3274 0.7464 0.5571 0.0000
8 CSA Defense 0.4035 0.8926 0.7967 0.0000
9 WMH Success 0.2309 0.7755 0.6014 0.5145
10 WMA Success 0.3030 0.8864 0.7856 0.6722
11 LWR Success 0.2821 0.9686 0.9382 0.8027
12 LRWL Success 0.2958 0.9437 0.8906 0.7620

In versions of plspm later than 0.4, what we get in foot_pls$outer model is a data frame.
This allows us to have the output ready for the package ggplot2 and take advatange of its
wide range of graphics posibilities. The data frame foot_pls$outer model constains five
columns. The first column corresponds to the block which is codified as a factor (i.e.
categorical variable). The second column contains the outer weights. The third column are
the loadings (correlations). Loadings greater than 0.7 are acceptable. To see why they are
acceptable we use the communalities in the fourth column. Communalities are just squared
loadings. They represent the amount of variablity explained by a latent variable. A loading
grater than 0.7 means that more than 0.7? ~ 50% of the variablity in an indicator is captured
by its latent construct. The fifth column are the redundancies; we’ll talk about them later
in this chapter.

Communality

Communality is calculated with the purpose to check that indicators in a block are well
explained by its latent variable. Communalities are simply squared loadings and they measure
the part of the variance between a latent variable and its indicator that is common to both.
To see why, we need to assume that each indicator represents an error measurement of its
construct. The relation:

muji, = loading;, LV; + error,

implies that the latent variable LV} explains its indicator mw,, so we have to evaluate how
well the indicators are explained by its latent variable. To do this, we examine the loadings
which indicate the amount of variance shared between the construct and its indicators. The
communality for the jk-th manifest variable of the j-th block is calculated as:

Com(LV;, muji) = cor?(LV;, muji) = loading,

Looking at the previous formula, communality measures how much of a given manifest vari-
able’s variance is reproducible from the latent variable. In other words, the part of variance

64

between a construct and its indicators that is common to both. One expects to have more
shared variance between an LV and its mv than error variance, that is:

loading3,, > var(error;)

Indicators with low communality are those for which the model is “not working” and the
researcher may use this information to drop such variables from the analysis.

For instance, let’s check what’s going on with the Defense block. The manifest variable GCH
has a loading of 0.4837 which is less than the recommended 0.7. In turn, its communality is
small with a value of 0.2339. We should seriously consider whether it makes sense to keep
this variable in our model. Although this indicator has some contribution to the Quality of
Defense, it doesn’t seem to be very happy in the Defense block. If we don’t want to have
an uncomfortable indicator, the best option is to remove it from the model. For convenience
and illustration purposes I'm going to keep GCH in our exmple, but if you find yourself in
the middle of a similar issue, you should talk to the experts and discuss whether to keep or
remove unhappy reflective indicators that don’t reflect enough.

4.3.4 Cross-loadings

Besides checking the loadings of the indicators with their own latent variables, we must also
check the so-called cross-loadings. That is, the loadings of an indicator with the rest of latent
variables. The reason for doing so is that we need to be sure that we don’t have traitor
indicators. The data frame of cross-loadings are in $crossloadings:

cross-loadings
foot_pls$crossloadings

#i# name block Attack Defense Success
1 GSH Attack 0.9380 0.5159 0.8977
2 GSA Attack 0.8621 0.3391 0.7519
3 SSH Attack 0.8408 0.4139 0.7714
4 SSA Attack 0.8263 0.3361 0.6390
5 NGCH Defense 0.1305 0.4837 0.1598
6 NGCA Defense 0.4622 0.8759 0.5751
7 CSH Defense 0.3188 0.7464 0.4810
8 CSA Defense 0.4215 0.8926 0.5928
O WMH Success 0.7086 0.4226 0.7755
10 WMA Success 0.7731 0.7115 0.8864
11 LWR Success 0.8444 0.5380 0.9686
12 LRWL Success 0.8601 0.5892 0.9437

We need to look at the list of results as if it were a super matrix. The way to read the cross-
loadings is by looking at this super matrix block by block paying attention to the sections in

65

the diagonal. These sections are the loadings of each block with its construct. A given loading
in one of these sections must be greater than any other loading in its row. For example, let’s
consider the first section that corresponds to the first column in the Attack block. GSH has
a loading value of 0.9380. This value must be greater than any other value in that first row.
The cross-loadings of GSH with Defense is 0.5159; the cross-loading of GSH with Success is
0.8977. Clearly, 0.9380 is greater than 0.5159 and 0.8977.

An alternative way to examine the table of cross-loadings is by visualizing them with some
bar-charts like those shown in the figure below:

Crossloadings

100 Attack, Attack Attack, Defense Attack, Success
0.75
0.50
0.25 IIII
0.00
100 Defense, Attack Defense, Defense Defense, Success
0.75 block
[J) .Attack
% 0.50 . Def
g efense
0.25 I . Success
0.00 . .
100 Success, Attack Success, Defense Success, Success
0.75
0.50
0.25 I
0.00
< - < - < -
T IT<Idx T IT<Ilx T IT<Idx
w%g)gggm%EE;E m%%%SBw%EE;E w%%%%Bm%EE;%
CONVVz300z22IFH COVLVLz30022IFH OOz 5002205
name

To get the previous bar-charts we need to use the packages ggplot2 and reshape (by Hadley
Wickham). Once you have installed both packages, the first step is to reformat the data
frame of crossloadings. This operation involves using the melt () function:

load ggplot2 and reshape
library(ggplot2)
library(reshape)

66

reshape crossloadings data.frame for ggplot
xloads = melt(foot_pls$crossloadings, id.vars = c(,),
variable_name =)

The reshaped (i.e. melted) data xloads is just another data.frame with the same informa-
tion as foot_pls$crossloadings. The only difference is in the arrangement of the values so
they can meet the required shape for ggplot ().

After reshaping the data, we can use ggplot() to produce the bar-charts. To do this,
we tell ggplot() to add bars with geom bar(). Note the use of the parameters stat =
’identity’ and position = ’dodge’. We also add some horizontal lines as visual references
with geom hline(). Then we indicate that we want a panel display with facet_wrap() by
crossing the loadings of block with the rest of latent variables (LV). Finally, we use theme ()
to a have a better positioning of the x-axis labels, the size of the title, as well as hiding the
grid lines:

bar-charts of crossloadings by block
ggplot(data = xloads,
aes(x = name, y = value, fill
add horizontal reference lines
geom_hline(yintercept = 0, color =) +
geom_hline(yintercept = 0.5, color
indicate the use of car-charts
geom_bar(stat = , position =) +
panel display (i.e. faceting)
facet_wrap(block ~ LV) +
tweaking some grahical elements
theme (axis.text.x = element_text(angle = 90),
line = element_blank(),
plot.title = element_text(size = 12)) +
add title
ggtitle()

block)) +

Il
—
'_‘-
B
(0]
ct

<
ol
(0]

Il
N
N7
oy

Keep in mind that cross-loadings allow us to we evaluate the extent to which a given construct
differentiates from the others. The whole idea is to verify that the shared variance between a
construct and its indicators is larger than the shared variance with other constructs. In other
words, no indicator should load higher on another construct than it does on the construct
it intends to measure. Otherwise, it is a traitor indicator. If an indicator loads higher with
other constructs than the one it is intended to measure, we might consider its appropriateness
because it is not clear which construct or constructs it is actually reflecting.

67

4.4 Measurement Model Assessment:
Formative Indicators

Unlike reflective indicators, formative indicators are considered as causing (i.e. forming) a
latent variable. The truth is that mathematically, all blocks of indicators could always be
taken in a reflective way. However, there may be theoretical or conceptual reasons to consider
a block as formative. Formative indicators do not necessarily measure the same underlying
construct. In this case, any change experienced by a construct does not imply a change in
all its indicators; that is, formative indicators are not supposed to be correlated. For this
reason, formative measures cannot be evaluated in the same way of reflective measures; and
all the assessment criteria based on the loadings are discarded in the formative measures.

We compare the outer weights of each indicator in order to determine which indicators con-
tribute most effectively to the construct. Attention must be paid in order to avoid misinter-
preting relative small absolute values of weights as poor contributions. If we are considering
the elimination of some indicator, this should be done based on multicollinearity: the elim-
ination is recommended if high multicollinearity occurs. This implies a strong consensus
among experts (based on theory) about how the latent variable is formed.

4.5 Structural Model Assessment

After assessing the quality of the measurement model, the next stage is to assess the structural
part. To inspect the results of each regression in the structural equations we need to display
the results contained in $inner model. These results are displayed in a list in the same way
as those provided by the function 1m() (i.e. linear model fitting). Since our example has
only one regression, we just have one element ($Success)

inner model
foot_pls$inner_model

$Success

Estimate Std. Error t value Pr(>ltl)
Intercept -2.356e-16 0.09217 -2.556e-15 1.000e+00
Attack 7.573e-01 0.10440 7.254e+00 1.349e-06

Defense 2.836e-01 0.10440 2.717e+00 1.466e-02

Besides the results of the regression equations, the quality of the structural model is evaluated
by examining three indices or quality metrics:

e the R? determination coefficients

e the redundancy index

68

e the Goodness-of-Fit (GoF)

4.5.1 Coefficients of determination R?

The R? are the coefficients of determination of the endogenous latent variables. To inspect
these coefficients you need to print the results in $inner_summary.

inner model summary
foot_pls$inner_summary

Hit Type R2 Block_Communality Mean_Redundancy AVE
Attack Exogenous 0.0000 0.7532 0.0000 0.7532
Defense Exogenous 0.0000 0.5887 0.0000 0.5887
Success Endogenous 0.8556 0.8040 0.6878 0.8040
select R2

foot_pls$inner_summary[, , drop = FALSE]

R2

Attack 0.0000
Defense 0.0000
Success 0.8556

For each regression in the structural model we have an R? that is interpreted similarly as
in any multiple regression analysis. R? indicates the amount of variance in the endogenous
latent variable explained by its independent latent variables.

The inner model seems to be fine, although we must keep in mind that this is a very simple
model. We have an R? = 0.85 which under the PLS-PM standards can be considered as an
outstanding R?. In fact, values for the R-squared can be classified in three categories (please
don’t take them as absolute truth):

1. Low: R < 0.30 (although some authors consider R < 0.20)
2. Moderate: 0.30 < R < 0.60 (you can also find 0.20 < R < 0.50)
3. High: R > 0.60 (alternatively there’s also R > 0.50)

4.5.2 Redundancy

Redundancy measures the percent of the variance of indicators in an endogenous block that
is predicted from the independent latent variables associated to the endogenous LV. Another
definition of redundancy is the amount of variance in an endogenous construct explained by

69

its independent latent variables. In other words, it reflects the ability of a set of independent
latent variables to explain variation in the dependent latent variable. The redundancy index
for the j-th manifest variable associated to the k-th block is:

RA(LVy, muvjy,) = loading’, R;,

High redundancy means high ability to predict. In particular, the researcher may be inter-
ested in how well the independent latent variables predict values of the indicators’ endogenous
construct. Analogous to the communality index, one can calculate the mean redundancy, that
is, the average of the redundancy indices of the endogenous blocks.

inner model summary
foot_pls$inner_summary

#it Type R2 Block_Communality Mean_Redundancy AVE
Attack Exogenous 0.0000 0.7532 0.0000 0.7532
Defense Exogenous 0.0000 0.5887 0.0000 0.5887
Success Endogenous 0.8556 0.8040 0.6878 0.8040

For each latent variable we have some descriptive information: type (exogenous or en-
dogenous), measurement (reflective or formative), and number of indicators. The column
R-square is only available for endogenous variables. The averga communality Av.Commu
indicates how much of the block variability is reproducible by the latent variable.

Next to the average communality we have the average redundancy Av.Redun which like the
R2 is only available for endogenous constructs. Av.Redun represents the percentage of the
variance in the endogenous block that is predicted from the indepedent LVs associated to
the endogenous LV. High redundancy means high ability to predict. Let’s say that we are
interested in checking how well the indepedent LVs predict values of endogenous indicators. In
our example the average redundancy for Success represents that Attack and Defense predict
68% of the variability of Success indicators

4.5.3 GoF

A remarkable aspect is that no single criterion exists within the PLS framework to measure
the overall quality of a model, so we cannot perform inferential statistical tests for goodness
of fit. As an alternative, non-parametrical tests can be applied for the assessment of the
structural model.

The GoF index is a pseudo Goodness of fit measure that accounts for the model quality at
both the measurement and the structural models. GoF is calculated as the geometric mean of
the average communality and the average R2 value. Since it takes in to account communality,
this index is more applicable to reflective indicators than to formative indicators. However,

70

you can also use the GoF index in presence of formative blocks, in which case more importance
will be given to the average R2.

gof index
foot_pls$gof

[1] 0.7823

GoF can be used a global criterion that helps us to evaluate the performance of the model in
both the inner and the outer models. Basically, GoF assess the overall prediction performance
of the model. The main drawback with the GoF index is that there is no threshold that allows
us to determine its statistical significance. Unfortunately, there is also no guidance about
what number could be considered a good GoF value. You can think of GoF as an index
of average prediction for the entire model. Although this is not entirely true, it helps to
understand GoF values. From this point of view, a GoF value of 0.78 could be interpreted
as if the prediction power of the model is of 78%. The naive rule of thumb is: the higher,
the better. Acceptable “good” values within the PLS-PM community are GoF >0.7

4.6 Validation

Since PLS-PM does not rest on any distributional assumptions, significance levels for the pa-
rameter estimates (based on normal theory) are not suitable. Instead, resampling procedures
such as blindfolding, jackknifing, and bootstrapping are used to obtain information about
the variability of the parameter estimates. plspm() uses the former approach to provide a
means for validating results.

4.6.1 Bootstrapping

Bootstrapping is a non-parametric approach for estimating the precision of the PLS param-
eter estimates. The bootstrap procedure is the following: M samples are created in order
to obtain M estimates for each parameter in the PLS model. Each sample is obtained by
sampling with replacement from the original data set, with sample size equal to the number
of cases in the original data set.

We use the argument boot.val to indicate that we wish to perform bootstrap validation. By
default plspm() runs 100 resamples but we can specify a different number with the argument
br. For instance, let’s get a validation with br=200 resamples.

running bootstrap validation
foot_val = plspm(spainfoot, foot_path, new_blocks_str, modes = foot_modes,
boot.val = TRUE, br = 200)

71

bootstrap results
foot_val$boot

#t
##
#it
#it
#it
#Hit
##
##
#it
#it
#it
##
##
#it
#it
#t
##
##
#it
#it
#it
#Ht
##
#it
#it
#it
#Hit
##
##
#it
#it
##
##
##
#it
#it
#Ht
##

Original Mean.Boot Std.
.04699 0.
.04893 0.
.05155 0.
.06251 0.
.18940 -0.
.07005 0
.08725 0
.08603 0
.03723 0.

0

0

0

0.

O O O OO O OO O o o

Mean.

$weights
GSH 0.3366
GSA 0.2819
SSH 0.2893
SSA 0.2396
NGCH 0.1088
NGCA 0.3914
CSH 0.3274
CSA 0.4035
WMH 0.2309
WMA 0.3030
LWR 0.2821
LRWL 0.2958
$loadings
Original
GSH 0.9380
GSA 0.8621
SSH 0.8408
SSA 0.8263
NGCH 0.4837
NGCA 0.8759
CSH 0.7464
CSA 0.8926
WMH 0.7755
WMA 0.8864
LWR 0.9686
LRWL 0.9437
$paths
Attack -> Success

.26981
.29613
.23324
.04359
.37595
.28835
.41384
.23046
.30040
.28362
.29658

O O O O O OO OO O oo

Defense —-> Success

$rsq

Success

0.8556

33477

O O O O O OO OO o oo

.9216
.8422
.8416
.8127
.3528
.8323
.6673
.8543
.7808
.8879
.9619
.9414

O O O O O OO OO o oo

Original
0.7573
0.2836

0.884

.03109
.01688
.02904

Boot Std.
.18909 0.
.11750 0.
.19186 0.
.12381 0.
.37592 -0.
.28609 0
.21917 0
.29122 0
.10617 0.

0

0

0

Error perc.025 perc.975

Error per

.05111
.03415
.03174

27743
16291
23436
07973
33398

.23944
.06395
.23406

15574

.26624
.25679
.26279

c.025
8753
5384
7329
4423
4436
.5804
.1029
.7178
5336
LT712
.8663
.8660

0.
.3161
.4379
.2998
.3306
.4851
.4240
.5661
.2926
.3615
.3249
.3685

O O O O O O O O O o o

4636

perc.975

0.
. 9482
.9365
.9422
. 8846
.9660
.9142
.9723
.9120
.95639
.9891
L9776

O O O OO OO OO oo

9775

Mean.Boot Std.Error perc.025 perc.975

0.7383
0.2833

0.06458

0.7

0.174 0.56209
0.115 0.07557

495

Original Mean.Boot Std.Error perc.025 perc.975
0.9678

0.9068
0.4655

72

#it
#Ht
#it
##
##
#it

$total.efs

Original Mean.Boot Std.Error perc.025 perc.975
Attack -> Defense 0.0000 0.0000 0.000 0.00000 0.0000
Attack -> Success 0.7573 0.7383 0.174 0.56209 0.9068
Defense -> Success 0.2836 0.2833 0.115 0.07557 0.4655

What we obtain in foot_val$boot is a list with results for:

the outer weights (foot_val$boot$weigts)
the loadings (foot_val$boot$loadings)

the path coefficients (foot_val$boot$paths)
the R? (foot_val$boot$rsq)

the total effects (foot_val$boot$total.efs)

Each one of these elements is a matrix that contains five columns: the original value of the
parameters, the bootstrap mean value, the bootstrap standard error, and the lower percentile
and upper percentiles of the 95% bootstrap confidence interval.

4.7 Reading List

How to Write Up and Report PLS Analyses by Wynne Chin (2010). This is the
Chapter 28 of the Handbook of Partial Least Squares. This chapter describes the general
steps to be performed for writing a report on results from a PLS-PM analysis.

Evaluation of Structural Equation Models Using Partial Least Squares (PLS) Ap-
proach by Oliver Gotz, Kerstin Liehr-Gobbers and Manfred Krafft (2010). This is the
Chapter 29 of the Handbook of Partial Least Squares. Provides a basic comprehension
of the PLS-PM methodology and it discussess guidelines for evaluation of structural
models.

The Use of Partial Least Squares Path Modeling in International Marketing by
Jorg Henseler, Christian Ringle and Rudolf R. Sinkovics (2009). This article in New
Challenges to International Marketing Advances in International Marketing (Vol. 20,
277 - 319) offers guidance for the use of PLS with an emphasis on reasearch studies on
marketing research. Covers the requirements, strengths and weaknesses of PLS-PM.

PLS: A Silver Bullet? by George A. Marcoulides and Carol Saunders (2006). This
is an Editorial comment in the journal MIS Quarterly (Vol. 30, No. 2). The authors

73

express their concerns about claims made by a number of authors about taking PLS as
a magic wand that can be applied indiscriminately to all problems.

A Critical Look at Partial Least Squares Modeling by George A. Marcoulides, Wynne
W. Chin and Carol Saunders (2009). This is the Foreword in the Special Issue Section
of the journal MIS Quarterly (Vol. 33, No. 1, 171-175). The authors express their
concerns about claims made by a number of authors about taking PLS as a magic wand
that can be applied indiscriminately to all problems.

74

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

Chapter 5

Running a PLS-PM Analysis

In this chapter we are going to carry out a PLS-PM analysis from beginning to end with
plspm. The purpose of this exercise is to reproduce, as much as possible, the main steps
that you would have to perform in a real life PLS-PM application. As in any data analysis
and modeling project, building models is usually the ultimate goal, yet we spend a lot more
time understanding the context of the analysis, manipulating the data into the right shape,
before we can begin estimating the models. I remember one of my mentors saying that we
spend 90% of the time cleaning and processing the data (I think he underestimated that
proportion). As we will find, we prepare the ingredients for our model, do some preliminary
check-ups, calculate the model, inspect some results, detect points than need improvement,
take a break and get a coffee, then go back to work on the data doing some transformation,
formatting, cleaning, build another model, drink more coffee, then return to processing the
data once again, and so on for many iterations. In most cases, each cycle takes us a step
closer to achieveing a satisfying solution.

This chapter presents the opportunity to work on a real case study in which we will go
through the iterative process required in almost every PLS-PM application. The application
is based on a modified Customer Satisfaction model, which is without a doubt the standard
bearer of the PLS Path Modeling applications.

5.1 Modeling Customer Satisfaction

We cannot scape the influence Customer Satisfaction modeling has had on PLS-PM. Over the
last ten years (~ 2000-2010) many of the successful applications of PLS Path Modeling have
been performed within marketing and management studies related with measuring customer
satisfaction. It is impossible to deny that this topic has played a key role on the applicability
of PLS-PM. Truth be told, Customer Satisfaction Modeling has become the reference appli-

5

76

cation when presenting the PLS path Modeling approach in academic courses, conferences,
seminars and workshops. No wonder why Customer Satisfaction Modeling is considered a
landmark for PLS-PM as well as an experimental field, becoming the main developmental
arena for PLS proposals and innovations.

5.1.1 ECSI Model

Among the large number of available measures of customer satisfaction, we can find the Eu-
ropean Customer Satisfaction Index (ECSI). In the late 1990s, the European Union,
inspired by the Swedish and the American Customer Satisfaction Indices, started to develop
a comparative system of national satisfaction indices. The result was the establishment of
the European Customer Satisfaction Index founded by the European Organization for Qual-
ity (EOQ), the European Foundation for Quality Management (EFQM) and the European
Academic Network for Customer Oriented Quality Analysis (IFCF), with the support of the
European Commission and the collaboration of the CSI university network integrated by 8
FEuropean universities.

The ECSI model, illustrated in the diagram below, is designed to measure the cause-effect
relationships from the antecedents of Customer Satisfaction to its consequences.

Expec—
tations

Perceived

Vvalue Satisfaction

Perceived
Quality

Figure 5.1: Diagram of the European Customer Satisfaction Index (ECSI) model

The antecedents of Customer Satisfaction (Image, Expectations, Perceived Quality, and Per-
ceived Value) are the drivers that affect customer satisfaction, while the consequences of

7

customer satisfaction (Loyalty and Complaints) are performance constructs.
Overview of constructs in the ECSI model:

e Image refers to the brand name and the kind of associations customers get from the
product/brand /company. It is expected that image will have a positive effect on cus-
tomer satisfaction and loyalty. In addition, image is also expected to have a direct
effect on expectations.

e Expectations is the information based on, not actual consumption experienced but,
accumulated information about quality from outside sources, such as advertising, word
of mouth, and general media.

e Perceived Quality comprises product quality (hardware) and service quality (soft-
ware/humanware). Perceived product quality is the evaluation of recent consumption
experience of products. Perceived service quality is the evaluation of recent consump-
tion experience of associated services like customer service, conditions of product dis-
play, range of services and products, etc. Perceived quality is expected to affect satis-
faction.

e Perceived Value is the perceived level of product quality relative to the price paid of
the “value for the money” aspect of the customer experience.

e Satisfaction is defined as an overall evaluation of a firm’s post-purchase performance
or utilization of a service.

e Complaints implies the complaints of customers

e Loyalty refers to the intention repurchase and price tolerance of customers. It is the
ultimate dependent variable in the model and it is expected that the better image and
higher customer satisfaction should increase customer loyalty.

5.1.2 Case Study: Satisfaction in Education

The case study for this chapter consists of an application of the ECSI model to Educational
Services. The data comes from a survey study made by a student diversity program office
in an American university. Typically, this kind of academic programs provide resources to
improve the career success of educationally and financially disadvantaged students throughout
their college years. In this case study we are going to consider a simplified and modified
version of the ECSI model.

The adapted model aims to measure how satisfied are the members of the program taking
into account the quality of the Support provided, the quality of the Advising, and the quality
of the Tutoring. It is also supposed that these three quality constructs have an impact on
the perceived Value. Besides measuring the satisfaction, the model also pays attention to the

78

Loyalty understood as the commitment and involvement of the students with the program.
As we would expect, the more satisfied the members of the program are, the more loyal to
the program they will be. The graphical display of the adapted PLS Path Model is shown
in the next diagram:

@ Satisfaction @

Figure 5.2: Path Diagram of an adapted ECSI model for Educational Services

Data Education

The dataset for the case study does NOT come with plspm. Since the goal of this chapter is
to show you how to use R for running a full PLS Path Modeling analysis, I've decided to go
through all the main steps of the analysis process. And that implies that you have to import
the dataset in R.

The dataset is available in text format (education.txt) and in comma separated value
format (education.csv) so you can choose the option that you like the most. Both files can
be downloaded from my website:

http://www.gastonsanchez.com/education.txt
http://www.gastonsanchez.com/education.csv

I suggest you to open the downloaded file with your favorite text processor (for the txt file)
or spreadsheet software (for the csv file) so that you take a quick glance at the data.

http://www.gastonsanchez.com/education.txt
http://www.gastonsanchez.com/education.csv

79

Importing data in R

Once you downloaded the file with the education data, the first step is importing the data
in your R session. R comes with various functions to read files. The most common option is
to use the function read.table(), but there are also other sister functions: read.csv() to
read .csv files, and read.delim() to read files with other types of delimiters. If you want
to know more about importing and exporting data in R, there is a dedicated manual in the
CRAN website:

http://cran.r-project.org/doc/manuals/R-data.html

And of course, you can always google for more specific questions.

In my case, I have the data files in my directory "/Users/gaston/PLS" (the location of the
data will be different in your case). Let’s see how to read the text file with the function
read.table():

read "education.txt"
education = read.table(, header = TRUE,
row.names = 1)

Basically, we are telling read.table() to read the text file education.txt located at
"/Users/gaston/PLS/education.txt". The parameter header=TRUE indicates that the first
row of the data are the column names. In turn, the parameter row.names=1 is used to indicate
that the first column contains the names of the rows.

Alternatively, if you prefer to read the .csv file, you can import the data with the function
read.csv() like this:

read "education.csv"
education = read.csv(, header = TRUE,
row.names = 1)

If everything went fine, you can use the function dim() to get the dimensions of the data
frame.

how many rows and oclumns?

dim(education)

[1] 181 26

The function summary () provides basic descriptive statistics of each column:

summarized statistics of the first 20 columns
summary (education[, 1:20])

sup.help sup.under sup.safe sup.conc
Min. :1.00 Min. :1.0 Min. :1.00 Min. :1.00
1st Qu.:5.00 1st Qu.:1.0 1st Qu.:4.00 1st Qu.:4.00

http://cran.r-project.org/doc/manuals/R-data.html

80

Median :6.00 Median :2.0 Median :6.00 Median :6.00
Mean :5.69 Mean :2.3 Mean :5.46 Mean 25, 28
3rd Qu.:7.00 3rd Qu.:4.0 3rd Qu.:7.00 3rd Qu.:7.00

Max. :7.00 Max. :7.0 Max. :7.00 Max. :7.00
adv.comp adv.acces adv.comm adv.qual

Min. :1.00 Min. :2.00 Min. :1.00 Min. :1.00
1st Qu.:6.00 1st Qu.:6.00 1st Qu.:6.00 1st Qu.:6.00
Median :7.00 Median :7.00 Median :7.00 Median :7.00
Mean :6.24 Mean :6.25 Mean :6.35 Mean :6.35
3rd Qu.:7.00 3rd Qu.:7.00 3rd Qu.:7.00 3rd Qu.:7.00
Max. :7.00 Max. :7.00 Max. :7.00 Max. :7.00
tut.prof tut.sched tut.stud tut.qual

Min. :3.00 Min. :2.00 Min. :1.00 Min. :1.00
1st Qu.:5.00 1st Qu.:5.00 1st Qu.:5.00 1st Qu.:5.00
Median :6.00 Median :6.00 Median :6.00 Median :6.00
Mean 5.82 Mean 5.54 Mean 5,62 Mean :5.82
3rd Qu.:7.00 3rd Qu.:6.00 3rd Qu.:6.00 3rd Qu.:7.00
Max. :7.00 Max. :7.00 Max. :7.00 Max. :7.00
val.devel val.deci val.meet val.info

Min. :1.0 Min. :1.00 Min. :1.00 Min. :2.00
1st Qu.:5.0 1st Qu.:5.00 1st Qu.:5.00 1st Qu.:6.00
Median :6.0 Median :6.00 Median :6.00 Median :6.00
Mean :5.6 Mean :5.54 Mean JEN55 Mean :6.09
3rd Qu.:7.0 3rd Qu.:7.00 3rd Qu.:7.00 3rd Qu.:7.00
Max. :7.0 Max. :7.00 Max. :7.00 Max. :7.00
#H#t sat.glad sat.expe sat.over loy.proud
Min. :1.00 Min. :1.00 Min. :1.00 Min. :1.00
1st Qu.:7.00 1st Qu.:6.00 1st Qu.:6.00 1st Qu.:6.00
Median :7.00 Median :7.00 Median :7.00 Median :7.00
Mean :6.68 Mean :6.25 Mean :6.38 Mean 16.47
3rd Qu.:7.00 3rd Qu.:7.00 3rd Qu.:7.00 3rd Qu.:7.00
Max. :7.00 Max. :7.00 Max. :7.00 Max. :7.00

Survey Questionnaire

Each column in the data is a response of the applied questionnaire to 181 students members
of the academic program. There are also three categorical variables (the last three columns):
gender, scholarships, and job. They indicate the gender of the respondents, whether they
have a scholarship, and whether they have a job. The rest of the questions are measured
on a 7-point scale. Depending on the question, the following options were given to the
respondents:

A) 1 = completely disagree, 4 = neither agree nor disagree, 7 = completely agree

81

B) 1 = not at all, 7 = very much

Below is the list of variables in the data, presented in blocks of indicators with their corre-
sponding question:

Support

sup.help I feel comfortable asking for help from the program’s staff
sup.under [feel underappreciated in the program

sup.safe I can find a place where I feel safe in the program
sup.conc [go to the program when I have concerns about school
Advising

adv.comp Competence of advisors

adv.acces Access to advisors

adv.comm Communication skills of advisors

adv.qual Overall quality of advising

Tutoring

tut.prof Proficiency of tutors

tut.sched Tutoring schedules

tut.stud Variety of study groups

tut.qual Overall quality of tutoring

Value

val.devel Helpfulness in my personal development
val.deci Helpfulness in personal decision making
val.meet Facilitating meeting people and contacts
val.info Accessibility to support and information
Satisfaction

sat.glad I'm glad to be a member of the program
sat.expe The program meets my expectations

sat.over Overall, I'm very satisfied with the program
Loyalty

loy.proud [I'm proud to tell others I'm part of the program
loy.recom [would recommend the program to my colleagues
loy.asha I often feel ashamed of being a member of the program
loy.back I'm interested in giving something back to the program

5.2 Preliminary Exploration

The dataset is already clean and shaped in the right format, which will save us a lot of time
dealing with the boring part of data pre-processing. As you can tell, the variables are already

82

named according the their corresponding blocks. However, we still have to work on a couple
of preparatory tasks before playing with the plspm() function. So let us start with some
preliminary analysis by exploring the dataset and the blocks of variables.

5.2.1 Looking at the data

First we will perform some visual explorations. We can calculate the distribution values with
the function table() and then apply barplot() to get a bar chart. This is how we do it
with the first variable sup.help:

distribution of first column
aux_distrib = table(education[, 1])/nrow(education)

barplot of the distribution
barplot (aux_distrib, border = NA, main = colnames(education) [1])

sup.help

0.3
|

0.2

0.1

1 2 3 4 5 6 7

Figure 5.3: Visualizing the distribution of the first Support indicator

Because we have four manifest variables related to Support, it would be nice to visualize the
distributions of all the indicators. Most of the graphics that we do are for purely inspection
purposes. But then we need to prepare some plots in a nicer way to be included in a report or
a presentation. Say we want to get more beautiful charts than the default options provided
by barplot (). We can use the colors in the package RColorBrewer (by Erich Neuwirth):

package RColorBrewer (for nice colors)
library(RColorBrewer)

83

We will also need to have better column labels instead of the column names in the data
education. Let’s create a vector with names for the indicators of Support:

questions of Support indicators
sql = "Help when not doing well"

8q2 = "I feel underappreciated"
89q3 = "I can find a place where I feel safe"
sq4 = "Concerns about school"

put questions in one vector
sup_questions = c(sql, sq2, sq3, sq4)

Here’s the figure with the bar charts of the manifest variables in Support:

Help when not doing well | feel underappreciated
0.3 04
0.3
0.2
0.2
0.1 . l 0'1 .
0.0 0.0 | —
1 2 3 4 5 6 7 1 2 3 4 5 6 7
| can find a place where | feel safe Concerns about school
0.30 0.30
0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 - 0.00 -
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 5.4: Visualizing the distributions of Support indicators

How do we get such a nice graphic? Here is the code to get pretty barplots of the first block
of manifest variables:

setting graphical parameters
op = par(mfrow = c(2,2), mar = c(2.5, 3.2, 2, 0.8))
bar-chart for each indicator of Support

84

for (j in 1:4) {
distribution = table(education[,j]) / nrow(education)
barplot(distribution, border = NA, col = brewer.pal(8,)[2:8],
axes = FALSE, main = sup_questions[j], cex.main = 1)
add vertical axis, and rectangle around figure
axis(side = 2, las=2)
box (, col=)
}
reset default graphical parameters
par (op)

To plot the distributions in a single graphic window, we use the function par() to set the
graphical parameters mfrow and mar. The parameter mfrow allows to set a layout with a
vector specifying the number of rows and columns. The parameter mar sets the margins of
the figures. In order to plot each barchart we apply a for loop that goes from the first to
the fourth column in the dataset. Notice that inside barplot() we are using brewer.pal ()
to specify the color palette "Blues". In addition, we are using axis() to manipulate the
vertical axis and show its numbers in a horizontal way (which makes it easier to read the
numbers). Finally, box () is used to plot the gray frame around each single figure. Your turn:
try to plot the distributions of all blocks of indicators in education.

If we pay attention to the barplots associated with Support, we should be able to see a clear
pattern: the distributions are skewed, either to the left or to the right. This is something
very common when working with people’s perceptions where they tend to agree or disagree
in a strong way. The other pattern has to do with the question “I feel underappreciated in
the program”. Notice that its distribution is concentrated in the lower values of the scale,
specially on 1. Can you guess why is this happening?

5.2.2 Seeing the forest, not just the trees

The barplots are a good means to have a better idea of what the data look like. But if we
want to have a deeper understanding of the data we have to take a next step: correlations.
Calculating correlations allows us to get a feeling of the relationships between the variables.
Let’s examine the correlations of the manifest variables integrating the Support block:

correlations of Support indicators
cor(education[, 1:4])

#it sup.help sup.under sup.safe sup.conc
sup.help 1.0000 -0.4056 0.5234 0.5383
sup.under -0.4056 1.0000 -0.3883 -0.2927
sup.safe 0.5234 -0.3883 1.0000 0.3710

85

sup.conc 0.5383 -0.2927 0.3710 1.0000

Is there anything that calls your attention? Notice that sup.under is negatively correlated
with the rest of indicators in the block Support. Jointly with the correlations, we can also
make use of Principal Component Analysis (PCA) in an attempt to appreciate the systematic
patterns in the data that are hard to see with the naked eye. We will perform a PCA with
the function nipals() available in the package plsdepot (rememeber to install it first with
install.packages()):

load plsdepot
library(plsdepot)

PCA of Support indicators with nipals
support_pca = nipals(education[,1:4])

plot

plot (support_pca, main = indicators
cex.main = 1)

Support indicators (circle of correlations)

1
sup.under
0.5 sup.comnc
N sup.help
g 0
P sup.safe
-0.5
-1
-1 -0.5 0 05 1

axis 1

Figure 5.5: Visualizing the correlations of Support indicators

This graphic is known as a circle of correlations and is just a representation of the variable
correlations on the first two principal axes associated with the first two principal components.

86

You can read this graphic as if it were a radar. While the indicators sup.conc, sup.help and
sup.safe are somewhat clustered on the right, the variable sup.under is in the upper-left
corner. The fact that sup.under is on the left compared to the other indicators, reflects the
fact of being negatively correlated with them. Why do we have this “anomaly”? The answer
can be found if we look at the second question associated to Support: [feel underappreciated
in the program. Clearly, this question is not measuring Support but rather Lack of Support.
Right now we are not going to do anything with this issue, although you should keep it in
mind (we’ll talk about it in the next section).

For the sake of convenience I'm not going to perform more PCA’s on the rest of blocks of
manifest variables. However, I encourage you to try to do the same exploratory analysis.
This is something that eventually you will have to do in any real life situation, and it will
save you further headaches when cooking your PLS path models.

5.3 PLS-PM Round 1

Let us assume that we have completed the exploratory phase of the manifest variables and
that everything seems to be reasonably OK. This would mean that we did our homework by
cleaning the data, treating missing values, deciding what to do with the outliers, formatting
those variables that needed some transformations, and so on. We are now ready for the main
show: the PLS Path Model building part. To start our model building process, we need
to prepare the main ingredients for plspm(): the path matrix, the list of blocks, and the
vector modes.

Inner model: path matrix

The path matrix of our model can be defined as:

rows of path matrix

Support = c(0, 0, 0, 0, 0, 0)
Advising = c(0, 0, 0, 0, 0, 0)
Tutoring = c(0, 0, 0, 0, 0, 0)
Value = c(1, 1, 1, 0, 0, 0)
Satisfaction = c(1, 1, 1, 1, 0, 0)
Loyalty = c(0, 0, 0, 0, 1, 0)

matrix (by row binding)
edu_path = rbind(Support, Advising, Tutoring, Value, Satisfaction, Loyalty)

add column names (optional)

87

colnames(edu_path) = rownames(edu_path)
We can check the path_.matrix in path diagram version with innerplot (). This will help

you to inspect the model and see if it is well defined:

plot the inner matrix
innerplot (edu_path, box.size = 0.1)

Support

Advising Loyalty

Tutoring > — Satisfaction

Value

Figure 5.6: Visualizing the path diagram of the inner model with innerplot

Outer model: blocks and modes

The second ingredient for plspm() is the list defining the blocks of the measurement (outer)
model and the measurement type to be used (reflective indicators in this case):

outer model
edu_blocks = list(1:4, 5:8, 9:12, 13:16, 17:19, 20:23)

modes (reflective blocks)
edu_modes = rep(, 6)

88

Applying plspm()

Once we have the required ingredients, we can apply plspm(). Since this is our first attempt,
we will use plspm() with its default arguments. We will later ask for bootstrap validation.

apply plspm
edu_plsl = plspm(education, edu_path, edu_blocks, modes = edu_modes)

print edu_plsl

edu_plsl

Partial Least Squares Path Modeling (PLS-PM)
-
NAME DESCRIPTION

1 $outer_model outer model

2 $inner_model inner model

3 $path_coefs path coefficients matrix
4 $scores latent variable scores

5 $crossloadings cross-loadings

6 $inner_summary summary inner model

7 SPeffects total effects

8 S$unidim unidimensionality

9 $gof goodness-of-fit

10 $boot bootstrap results

11 $data data matrix
w---——

You can also use the function 'summary'

As you know, you can use the function summary () to display all the results of the model in
the screen of your R session. For illustration purposes I won’t use summary() but instead
will go step by step with the results contained in edu_plsi:

Unidimensionality of Reflective Blocks

The diagnosis of a PLS path model begins with assessing the quality of the measurement
model. Since we have reflective indicators, we must chek the unidimensionality of the blocks.
Unidimensionality implies that the reflective indicators must be in a geometrical space of
one dimension. Remember that manifest variables in a reflective block are considered as
being caused by their latent variable (i.e. reflective manifest variables are indicating the
same latent variable). In PLS-PM we have three main indices to check unidimensionality: 1)
the Cronbach’s alpha, 2) the Dillon-Goldstein’s rho, and 3) the first eigenvalue of the MVs
correlation matrix:

89

check unidimensionality
edu_plsi$unidim

#Hit Mode MVs C.alpha DG.rho eig.lst eig.2nd
Support A 4 0.1967 0.6168 2.271 0.7292
Advising A4 0.9283 0.9492 3.296 0.3430
Tutoring A 4 0.8545 0.9021 2.791 0.5377
Value A4 0.9103 0.9371 3.154 0.5090
Satisfaction A 3 0.9025 0.9390 2.511 0.2700
Loyalty A 4 0.3383 0.7223 2.623 0.6791

Looking at the table in edu_ pls1$unidim, most of the blocks seem to have acceptable values
(greater than 0.7) for the Cronbach’s alpha and Dillon-Goldstein’s rho. However, Support
and Loyalty present low alphas of 0.1967 and 0.3383, respectively. To have a better idea of
what’s going on with the indicators in the “problematic” blocks, let’s plot the loadings

plotting the loadings

plot(edu_plsl, what =

It turns out that the variable sup.under has a negative loading with Support. This corre-

Support
loadings

Support

% 7466 &0.8474

up.conc V —O%T,Bshe”
0.752&

sup.safe sup.under

Value
loadings

Value

%8611 %8951

val.info V 0. 8\églédeve
0.904

val.meet val.deci

Advising
loadings

Advising
0.9061
Sosdor| %
dv.qual V &O_g&\gcon
0.916

adv.comm adv.acces

Satisfaction
loadings

Satisfaction

%927 &'9044

at.over ‘p.glzs sat.gla

sat.expe

Tutoring
loadings

Tutoring

0.8772
Aot N
ut.qual V Eko_&⁢prm
0.774

tut.stud tut.sched

Loyalty
loadings

Loyalty
%7842 &8726
ay.back 0_d8¥$prou
Vos¥

loy.asha loy.recom

Figure 5.7: Visualizing the loadings (correlations)

90

sponds to what we saw earlier in section 2 of this chapter. In addition, the variable loy.asha
presents the same issue in the block of Loyalty. Although these two blocks can be considered
as unidimensional, they both have an indicator that is not pointing in the same direction as
the other indicators in each block. What would you do to fix this problem?

5.4 PLS-PM Round 2

We need to change the indicators sup.under and loy.asha. The question behind sup.under
is: “I feel underappreciated in the program”. The question behind loy.asha is: “I often feel
ashamed of the program”. Thus, instead of “I feel underappreciated” we would like to have
“I feel appreciated”. In the same way, instead of “I often feel ashamed of being a member of
the program”, we would like to have “I feel pleased of being a member of the program”.

This issue is more common than you think. You would be surprised by how many times
I've seen this “anomaly” when analyzing others researchers’ data. This is obviously not a
problem of PLS or any other structural equation modeling approach. This is an issue that
has to do with survey desings, more specifically with the designing of the questions. That’s
why is so crucial to get familiar with your data and do the exploratory analysis so you don’t
get caught unguarded with this type of phenomenon. I know that we already had detected
the problem with sup.under, but I wanted to get to this point so you could see one of the
many fault-prone components that you will encounter when applying PLS-PM.

The proposed solution is to invert the scale of the ill-fated manifest variables. Actually, the
proposal consists of creating new indicators that we may call sup.appre (I feel appreciated
in the program) and loy.pleas (I feel pleased of being a member of the program). Here is
how you can create the new indicators and add them to education:

adding Support 'appreciated'
education$sup.appre = 8 - education$sup.under

adding 'Loyalty' pleased
education$loy.pleas = 8 - education$loy.asha

We take the number 8 and we subtract the original values. In this way, when we had a value
of 1 we now have a value of 7. Conversely, when we had a 7 we now have a 1.

Let’s apply plspm() again. Of all the ingredients, we need to re-specify the outer list because
of the two new indicators that we just aggregated to the data frame:

outer model 2
edu_blocks2 = list(c(1, 27, 3, 4), 5:8, 9:12, 13:16, 17:19, c(20, 21, 28,
23))

91

apply plspm
edu_pls2 = plspm(education, edu_path, edu_blocks2, modes

edu_modes)

As we did in the last section, we can visualize the loadings in each block and make sure that
this time all the arrows are colored in blue, meaning positive correlations (i.e. loadings):

plotting the loadings

plot(edu_pls2, what

Support Advising Tutoring
loadings loadings loadings
Support Advising Tutoring

% 7466 \0.8474

up.conc V &o,e@ﬁ?'he”
0.752

%9491 \0.9061

dv.qual % 916&0'5&\{’-(:0”

0.8772
Soses S
ut.qual V golsigﬁ.prm
0.774

sup.safe sup.appre adv.comm adv.acces tut.stud tut.sched
Value Satisfaction Loyalty
loadings loadings loadings
Value Satisfaction Loyalty

%8611 \08951

val.info V &o. 3%%';,‘]'9"6
0.904

val.meet

val.deci

Figure 5.8: Visualizing loadings - round 2

at.over

ooz 0

sat.expe

And we check the blocks’ unidimensionality:

check unidimensionality
edu_pls2$unidim

Klb.9128 sat.gla

#i# Mode MVs C.alpha DG.rho eig.1lst eig.2nd
Support A 4 0.7433 0.8392 2.271 0.7292
Advising A 4 0.9283 0.9492 3.296 0.3430
Tutoring A 4 0.8545 0.9021 2.791 0.5377
Value A4 0.9103 0.9371 3.154 0.5090
Satisfaction A3 0.9025 0.9390 2.511 0.2700
Loyalty A 4 0.8200 0.8827 2.623 0.6791

%7842 &0'8726
ay.back 0 SJg)&prou
%.656& '

loy.pleas loy.recom

92

By using the modified indicators with inverted scales, we have managed to solve the issue
with the unidimensionality of the blocks. Now Support has a Cronbach’s alpha of 0.7433
and Loyalty has a corresponding alpha of 0.82.

Loadings and Communalities

Besides plotting the loadings, we need to do a more careful inspection by checking the results
contained in $outer model:

check outer model
edu_pls2$outer_model

#it name block weight loading communality redundancy
1 sup.help Support 0.3870 0.8474 0.7181 0.0000
2 sup.appre Support 0.2741 0.6539 0.4275 0.0000
3 sup.safe Support 0.3173 0.7525 0.5663 0.0000
4 sup.conc Support 0.3404 0.7466 0.5574 0.0000
5 adv.comp Advising 0.2652 0.9061 0.8210 0.0000
6 adv.acces Advising 0.2572 0.8565 0.7336 0.0000
7 adv.comm Advising 0.2879 0.9165 0.8400 0.0000
8 adv.qual Advising 0.2903 0.9491 0.9008 0.0000
9 tut.prof Tutoring 0.3023 0.8772 0.7695 0.0000
10 tut.sched Tutoring 0.3154 0.8466 0.7168 0.0000
11 tut.stud Tutoring 0.2975 0.7746 0.6000 0.0000
12 tut.qual Tutoring 0.2830 0.8388 0.7035 0.0000
13 val.devel Value 0.2628 0.8951 0.8012 0.5195
14 val.deci Value 0.2759 0.8889 0.7902 0.5124
15 val.meet Value 0.2739 0.9045 0.8181 0.5304
16 val.info Value 0.3156 0.8611 0.7415 0.4808
17 sat.glad Satisfaction 0.3543 0.9044 0.8179 0.5144
18 sat.expe Satisfaction 0.3550 0.9128 0.8331 0.5240
19 sat.over Satisfaction 0.3835 0.9270 0.8594 0.5406
20 loy.proud Loyalty 0.3334 0.8726 0.7614 0.4591
21 loy.recom Loyalty 0.3513 0.9035 0.8163 0.4922
22 loy.pleas Loyalty 0.2423 0.6561 0.4305 0.2596
23 loy.back Loyalty 0.2968 0.7842 0.6150 0.3708

What we get is a data frame with the outer weights, the loadings (correlations), the commu-
nalities and the redundancies. Acceptable values for the loadings are values greater than 0.7.
Equivalently, communalities values greater than 0.7 = 0.49 are considered as acceptable.
Because communalities represent the amount of variablity explained by a latent variable, a

93

communality greater than 0.5 means that more than 50% of the variablity in an indicator is
captured by its latent construct.

Since the output of the outer model is a data frame, we can take advantage of the package
ggplot2 to produce a bar chart of loadings (or communalitites). Here’s an option to visualize
the loadings (remember to install ggplot?2 if you haven’t done it):

load ggplot2

library(ggplot2)

barchart of loadings
ggplot(data = edu_pls2$outer_model,
aes(x = name, y = loading, fill = block)) +
geom_bar(stat = 'identity', position = 'dodge') +
threshold line (to peek acceptable loadings above 0.7)
geom_hline(yintercept = 0.7, color = 'gray50') +
add title
ggtitle("Barchart of Loadings") +
rotate x-axis names

theme (axis.text.x = element_text(angle = 90))

Barchart of Loadings

0.75 -
block
.Support
g) .Advising
? 0.50 - . Tutoring
o .Value
. Satisfaction
0.25-] Loyally
0.00 -
1 1
(0] Q o e = — i
o < o w ©O — — o =~ T £ o
T 88 S5 E S ETE 2382 Z g 288 E 35 8
Q 9 o o ¢ s £ =2 2 o @ c =5 X 2 92 o o ®
s 2<% c s T 5388 & c 2T E =20 L5 5 08 a5 9
g g > > 3 5 5 5 8 3 % 8B 8§ 8B x = x >
2 2 33 3388 23 222¢823¢>3F8 3382
name

Notice that the Support indicator sup.appre has a loading of 0.6539 (below the gray hor-
izontal line). Likewise, the Loyalty indicator loy.pleas has a loading of 0.6561. These

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

94

loadings are below the recommended threshold of 0.7. Actually, these are the modified indi-
cators that we included in the data and it seems that they are not happy indicators. Whether
you decide to keep them or remove them is up to many things. Are they really important
for the model? Are they really relevant in the theory used to propose the model? What
do the experts that you are working with have to say? Could you replace them with other
indicators? These are some of the question that you have to face in cases like this one. Being
this a tutorial example, I propose to ban the unhappy indicators and re-run again our PLS
path model without sup.appre and loy.pleas.

5.5 PLS-PM Round 3

We said in this chapter’s introduction that data analysis and model building is an iterative
process. The myth of applying any method in a straightforward way is just that: a myth.
We have tried to estimate two PLS models without much “success”. But you should know
that this is totally fine, after all we are just getting a little bit closer to our goal. This is a
trial and error process that may require transforming and merging data, redefine the model,
remove some observations, and sometimes even get more data with better quality. In real
life I would recommend you to stop for a while, take a break, go for a walk. After that, we
can go back to work and redefine the list of blocks and re-apply plspm() one more time:

outer model 3
edu_blocks3 = list(c(1, 3, 4), 5:8, 9:12, 13:16, 17:19, c(20, 21, 23))

re-apply plspm
edu_pls3 = plspm(education, edu_path, edu_blocks3, modes = edu_modes)

5.5.1 Checking unidimensionality

As it is customary, we begin by checking the blocks’ unidimensionality:

check unidimensionality
edu_pls3$unidim

#it Mode MVs C.alpha DG.rho eig.lst eig.2nd
Support A 3 0.7328 0.8492 1.959 0.6293
Advising A4 0.9283 0.9492 3.296 0.3430
Tutoring A 4 0.8545 0.9021 2.791 0.5377
Value A4 0.9103 0.9371 3.154 0.5090
Satisfaction A 3 0.9025 0.9390 2.511 0.2700
Loyalty A 3 0.8454 0.9071 2.297 0.4889

95

Everything looks fine: both the Croncbach’s alphas and the Dillon-Goldstein’s rhos are
greater than 0.7. Regarding the eigen-analysis, the first eigenvalues are much more larger
than 1, while the second eigenvalues are smaller than 1, which is taken as evidence that the
variables in each block live in a more-or-less unidimensional space.

5.5.2 Loadings and Communalities

We then proceed with evaluating the loadings and communalities. This time all the indicators
in each block should be happy indicators: loadings greater than 0.7 and communalities greater
than 0.49:

check outer model
edu_pls3$outer_model

#it name block weight loading communality redundancy
1 sup.help Support 0.4571 0.8697 0.7563 0.0000
2 sup.safe Support 0.3747 0.7631 0.5823 0.0000
3 sup.conc Support 0.4021 0.7872 0.6197 0.0000
4 adv.comp Advising 0.2652 0.9061 0.8210 0.0000
5 adv.acces Advising 0.2572 0.8565 0.7336 0.0000
6 adv.comm Advising 0.2879 0.9165 0.8400 0.0000
7 adv.qual Advising 0.2903 0.9491 0.9008 0.0000
8 tut.prof Tutoring 0.3024 0.8772 0.7695 0.0000
9 tut.sched Tutoring 0.3154 0.8466 0.7168 0.0000
10 tut.stud Tutoring 0.2974 0.7746 0.6000 0.0000
11 tut.qual Tutoring 0.2830 0.8388 0.7035 0.0000
12 val.devel Value 0.2637 0.8956 0.8021 0.5304
13 val.deci Value 0.2764 0.8893 0.7908 0.5229
14 val.meet Value 0.2743 0.9044 0.8180 0.5408
15 wval.info Value 0.3137 0.8604 0.7403 0.4895
16 sat.glad Satisfaction 0.3579 0.90563 0.8196 0.5120
17 sat.expe Satisfaction 0.3543 0.9125 0.8326 0.5201
18 sat.over Satisfaction 0.3807 0.9264 0.8582 0.5361
19 loy.proud Loyalty 0.3874 0.8873 0.7872 0.4595
20 loy.recom Loyalty 0.4082 0.9246 0.8549 0.4990
21 loy.back Loyalty 0.3447 0.8089 0.6544 0.3819

Cross-lodadings

After checking the loadings of the indicators with their own latent variables, we continue with
inspecting the so-called cross-loadings. That is, the loadings of an indicator with the rest

96

of latent variables. The reason why we check this is because we don’t want traitor indicators:

check cross loadings
edu_pls3$crossloadings

#i# name block Support Advising Tutoring Value Satisfaction Loyalty
1 sup.help Support 0.8697 0.4719 0.4003 0.7006 0.5593 0.4888
2 sup.safe Support 0.7631 0.2819 0.3365 0.5568 0.4762 0.3452
3 sup.conc Support 0.7872 0.3762 0.4243 0.6523 0.4563 0.4168
4 adv.comp Advising 0.3927 0.9061 0.4028 0.4546 0.5919 0.4154
5 adv.acces Advising 0.3898 0.8565 0.3848 0.4493 0.5654 0.3813
6 adv.comm Advising 0.4830 0.9165 0.4450 0.5122 0.6240 0.4660
7 adv.qual Advising 0.4447 0.9491 0.4730 0.4976 0.6479 0.4824
8 tut.prof Tutoring 0.3955 0.4793 0.8772 0.4105 0.4399 0.4423
9 tut.sched Tutoring 0.4329 0.3453 0.8466 0.4375 0.4496 0.4373
10 tut.stud Tutoring 0.3964 0.3487 0.7746 0.4010 0.4356 0.3631
11 tut.qual Tutoring 0.3734 0.4018 0.8388 0.3657 0.4302 0.3740
12 val.devel Value 0.6939 0.4424 0.3642 0.8956 0.5583 0.5087
13 val.deci Value 0.7173 0.4649 0.4303 0.8893 0.5454 0.4743
14 val.meet Value 0.6956 0.4027 0.4085 0.9044 0.6345 0.5034
15 wval.info Value 0.6983 0.5497 0.5031 0.8604 0.6983 0.5808
16 sat.glad Satisfaction 0.5328 0.5493 0.4573 0.5760 0.9053 0.8199
17 sat.expe Satisfaction 0.5839 0.5808 0.4751 0.6425 0.9125 0.6236
18 sat.over Satisfaction 0.5779 0.7033 0.5099 0.6759 0.9264 0.6556
19 loy.proud Loyalty 0.4172 0.3690 0.3857 0.4596 0.6796 0.8873
20 loy.recom Loyalty 0.4730 0.4623 0.4463 0.5220 0.7160 0.9246
21 loy.back Loyalty 0.4807 0.4374 0.4466 0.5641 0.6046 0.8089

Remember that you need to look at the list of results as if it were a super matrix: read
it block by block paying attention to the sections in the diagonal. These sections are the
loadings of each block with its construct. A given loading in one of these sections must be
greater than any other loading in its row. For example, let’s consider the last section that
corresponds to Loyalty. The last column in this section has the loadings of the manifest
variables in Loyalty. Let’s focus on the first indicator loy.proud that has a loading of
0.8873. All of its cross-loadings are smaller than 0.8873, which is good. If you do the same
check-up for loy.recom and loy.back, you should see that all their cross-loadings are below
their respective loadings.

What if an indicator loads higher with other constructs than the one it is intended to measure?
Then you must consider whether it is appropriate to include it in the model. A hesitant
indicator that is not clear which construct or constructs it is actually reflecting is not well
seen. Reflective indicators need to get along with its latent variable; they must show sings
of membership and belonging to one and only one latent variable: they need to be loyal to
its construct. If one indicator loads higher on another construct, this could be evidence of

97

treason. We don’t want traitor indicators, we want loyal indicators.

5.5.3 Path Coefficients

After assessing the quality of the outer model, then we can turn into the inner model to
check its quality. We may start evaluating the structural results by taking a peek at the path
coefficients using the plot () function:

plotting results (inner model)
plot(edu_pls3)

Support
Advising Loyalty
4\9.1004
&0.8762 AO-764
§0.1727
Tutoring - B-O 1312 Satisfaction
0.082
AL
¥70.3493
Value

Figure 5.9: Inner model with path coefficients

As you can see from the previous plot, we have an issue with the arrows from Support to
Value and from Advising to Satisfaction. The problem is that the path coefficients on
these arrows are overlapped and it’s impossible to distinguish them. We can also inspect the
coefficients directly on the matrix of path coefficients:

matrix of path coefficients
edu_pls3$path_coefs

#it Support Advising Tutoring Value Satisfaction Loyalty
Support 0.0000 0.0000 0.00000 0.0000 0.000 0
Advising 0.0000 0.0000 0.00000 0.0000 0.000 0

Tutoring 0.0000 0.0000 0.00000 0.0000 0.000 0

98

Value 0.6702 0.1727 0.08196 0.0000 0.000 0
Satisfaction 0.1004 0.3764 0.13121 0.3493 0.000 0
Loyalty 0.0000 0.0000 0.00000 0.0000 0.764 0

Even though we have the matrix of path coefficients, it would still be good to visualize the
coefficients on the path diagram without the overlapping inconvenient. This can be easily
solved using the arrow position argument arr.pos inside the plot() function. The default
value of this argument is arr.pos = 0.5 indicating that the arrowhead is located at the
middle of the arrow. Try a different value to modify the position:

plotting results (inner model)
plot(edu_pls3, arr.pos = 0.35)

Support

0.1004

Advising Loyalty
,0.6702
s§93763
&0.1727 |
AO-764
Tutoring e | Satisfaction
0.1312
£.0.082
¥70.3493

Value

Figure 5.10: Slightly changing the location of the path coefficients

We can obtain another interesting display by using the parameter arr.1lwd inside the plot ()
function. This parameter allows us to modify the line width of the arrows between any two
latent variables. By default arr.lwd = 3, but we can specify a matrix like the matrix of
path coefficients ($path_coefs) with different values for each arrow. Here is an example of
how can we define such a matrix:

matrix of path coefficients
Paths = edu_pls3$path_coefs

matrix with values based on path coeffs

99

arrow_lwd = 10 * round(Paths, 2)

how does it look like?

arrow_lwd

#it Support Advising Tutoring Value Satisfaction Loyalty
Support 0.0 0.0 0.0 0.0 0.0 0
Advising 0.0 0.0 0.0 0.0 0.0 0
Tutoring 0.0 0.0 0.0 0.0 0.0 0
Value 6.7 1.7 0.8 0.0 0.0 0
Satisfaction 1.0 3.8 1.3 3.5 0.0 0
Loyalty 0.0 0.0 0.0 0.0 7.6 0

Let us see the effect that arrow_1wd has on the size of each arrow:

arrows of different sizes reflecting the values of the path coeffs
plot(edu_pls3, arr.pos = 0.35, arr.lwd = arrow_lwd)

Support
Advising 0.1004 Loyalty
0.6702
&0.376!
901727 1
‘0.764
Tutoring 0.082 90_1312— Satisfaction
Al
%70.3493

Value

Figure 5.11: Line width of arrows reflecting the magnitude of the path coefficients

5.5.4 Structural Regressions

In addition to inspecting the path coefficients, we must also review the regression results of
each endogenous construct. This implies examining the regressions for Value, Satisfaction,

100

and Loyalty. To check the inner regressions we print the output of $inner model:

inner model

edu_pls3$inner_model

$Value

#Hit Estimate Std. Error t value Pr(>|tl)
Intercept -7.645e-17 0.04375 -1.747e-15 1.000e+00
Support 6.702e-01 0.05260 1.274e+01 8.311e-27
Advising 1.727e-01 0.05233 3.301e+00 1.166e-03
Tutoring 8.196e-02 0.05256 1.559e+00 1.207e-01
##

$Satisfaction

#Hit Estimate Std. Error t value Pr(>ltl)
Intercept 1.804e-16 0.04618 3.906e-15 1.000e+00
Support 1.004e-01 0.07688 1.306e+00 1.931e-01
Advising 3.764e-01 0.05691 6.614e+00 4.324e-10
Tutoring 1.312e-01 0.05586 2.349e+00 1.993e-02
Value 3.493e-01 0.07934 4.402e+00 1.853e-05
##

$Loyalty

it Estimate Std. Error t value Pr(>|tl)
Intercept 2.54e-16 0.04823 5.266e-15 1.000e+00
Satisfaction 7.64e-01 0.04823 1.584e+01 6.765e-36

The R2 values are the coefficients of determination of the endogenous latent variables. For
each regression in the structural model we have an R? that is interpreted similarly as in any
multiple regression analysis. R? indicates the amount of variance in the endogenous latent
variable explained by its independent latent variables.

5.5.5 Effects

Another interesting result to pay attention to is the table of $effects. This table contains
the effects that each construct has on the rest of constructs by taking into consideration the
total number of connections in the inner model. The direct effects are given by the path
coefficients. But there are also the indirect effects and the total effects. An indirect effect
is the influence of one construct on another construct by taking an indirect path. The total
effects are the sum of both the direct and indirect effects:

effects
edu_pls3$effects

#it relationships direct indirect total

101

1 Support -> Advising 0.00000 0.00000 0.00000
2 Support -> Tutoring 0.00000 0.00000 0.00000
3 Support -> Value 0.67021 0.00000 0.67021
4 Support -> Satisfaction 0.10043 0.23408 0.33452
5 Support -> Loyalty 0.00000 0.25557 0.25557
6 Advising -> Tutoring 0.00000 0.00000 0.00000
7 Advising -> Value 0.17273 0.00000 0.17273
8 Advising -> Satisfaction 0.37640 0.06033 0.43673
9 Advising -> Loyalty 0.00000 0.33365 0.33365
10 Tutoring -> Value 0.08196 0.00000 0.08196
11 Tutoring -> Satisfaction 0.13121 0.02863 0.15983
12 Tutoring -> Loyalty 0.00000 0.12211 0.12211
13 Value -> Satisfaction 0.34927 0.00000 0.34927
14 Value -> Loyalty 0.00000 0.26683 0.26683
15 Satisfaction -> Loyalty 0.76398 0.00000 0.76398

The indirect effects are obtained as the product of the path coefficients by taking an indirect
path. For instance, consider the impact of Value on Loyalty. Even though these two
constructs are not directly connected, there is an indirect path from Value to Loyalty that
goes through Satisfaction. If you multiply the path coefficient of Value on Satisfaction
(0.3493) with the path coefficient of Satisfaction on Loyalty (0.764), you get the indirect
effect of Value on Loyalty: 0.2668 = 0.3493 x 0.764.

Visualizing the Effects

A useful and nicer way to inspect the combined effects is by using the graphic capabilities of
R to produce a bar chart with the function barplot(). To create the barplot of effects we
first select the “active” rows from edu_pls3$effects. We can do this by creating a vector
with those rows from the data frame of effects that contain direct and indirect effects (we
don’t want the uninteresting rows full with zeros).

selecting effects ('active' rows)
good_rows = c(3:5, 7:15)

'active' effects in matrix format
path_effs = as.matrix(edu_pls3$effects[good_rows, 2:3])

Because barplot () only works with vectors or matrices, we need to impose a matrix format
to path_effs. For convenience sake, we also add row names to our matrix path_effs:

add rownames to path_effs
rownames (path_effs) = edu_pls3$effects[good_rows, 1]

102

how does path_effs look like?

path_effs

#it direct indirect
Support -> Value 0.67021 0.00000
Support -> Satisfaction 0.10043 0.23408
Support -> Loyalty 0.00000 0.25557
Advising -> Value 0.17273 0.00000
Advising -> Satisfaction 0.37640 0.06033
Advising -> Loyalty 0.00000 0.33365
Tutoring -> Value 0.08196 0.00000
Tutoring -> Satisfaction 0.13121 0.02863
Tutoring -> Loyalty 0.00000 0.12211
Value —-> Satisfaction 0.34927 0.00000
Value -> Loyalty 0.00000 0.26683
Satisfaction -> Loyalty 0.76398 0.00000

Once we have our matrix with path effects, we can create the bar chart like so:
setting margin size

op = par(mar = c(8, 3, 1, 0.5))

barplots of total effects (direct + indirect)

barplot(t(path_effs), border = NA, col = c(s),
las = 2, cex.names = 0.8, cex.axis = 0.8,
legend = c(,)
args.legend = list(x = , ncol = 2, border = NA,
bty = , title =))
resetting default margins
par (op)

The first line defines the graphical parameter mar that sets the figure margins to the specfied
values. Then we have the function barplot (). Note that we are using t (path_effs) which
means that we are trasposing the matrix of path effects. To get nice bars I avoid borders
(border=NA). The vector of colors col is expressed in hezadecimal (hex) notation. Then we
have another graphical parameter 1as=2 that is used to specify the style of the axis labels in
a perpendicular way, making numbers easier to read and showing the x-axis labels in vertical
way. The cex arguments indicate the expansion of the names and axis-numbers. legend is a
character vector with the labels used for the displayed legend. And finally, there is a long list
of parameters in args.legend that are passed to the function legend (). Your homework is
to use help(legend) to see the meaning behind the arguments in args.legend.

103

0.7 —

0.6 —

0.5 —

0.4 —

Support —> Value
Support —> Satisfaction
Support —> Loyalty

Advising —> Value

.dvising —> Satisfaction

Effects
Indirect ™ Direct

Advising —> Loyalty

Tutoring —> Value

‘utoring —> Satisfaction

Tutoring —> Loyalty

0.3 —

0.2 —

B B
B n

Value —> Satisfaction

Figure 5.12: Total Effects: Direct + Indirect paths

5.5.6 Inner Model Summary

Value —> Loyalty

>
=
S,
(S)
-
A
I
c
jel
=
Q
8
i
s
n

The next set of results that you need to evaluate are the summary indices contained in
$inner summary. This is a data frame with diferent metrics that provides you with an

overall summary of the structural model.

edu_pls3$inner_summary

#it Type
Support Exogenous
Advising Exogenous
Tutoring Exogenous
Value Endogenous
Satisfaction Endogenous
Loyalty Endogenous
#i# AVE

CC BY-NC-SA 3.0 Gaston Sanchez

O O O O O O

R2 Block_Communality Mean_Redundancy

.0000
.0000
.0000
.6612
.6247
.5837

0.6528
0.8238
0.6974
0.7878
0.8368
0.7655

0.0000
.0000
.0000
.5209
.5227
.4468

O O O O O

PLS Path Modeling with R

104

Support 0.6528
Advising 0.8238
Tutoring 0.6974
Value 0.7878
Satisfaction 0.8368
Loyalty 0.7655

We already saw the R2 values when we inspected the structural regressions, so let’s focus
on the last three columns. The average communality Av.Commu indicates how much of a
reflective block variability is reproducible by the latent variable. On average, we would expect
to have at least 50% of communality in a reflective block. The next column Av.Redun is the
average redundancy which reflects the ability of the independent latent variables to explain
the average variation of the indicators in the dependent latent variable. For isntance, the
average redundancy for Loyalty implies that Satisfaction predicts 44% of the variability
in Loyalty indicators.

The last columnn AVE is the Awverage Variance Extracted which measures the amount of
variance that a latent variable captures from its indicators in relation to the amount of
variance due to measurement error. As a rule of thumb, we should check that AVE is greater
than 0.50 which means that 50% or more of the indicators’s variance is accounted for.

5.5.7 GoF

The final measure of quality that we need to examine is the so-called GoF index contained
in $gof. This is a pseudo Goodness-of-Fit measure that attempts to account for the overall
quality at both the measurement and the structural models. Basically, GoF assess the overall
prediction performance of the model by taking into account the communality and the R?
coefficients. However, you can also use the GoF index in presence of formative blocks, in
which case more importance will be given to the average R2.

gof index
edu_pls3$gof

[1] 0.6891

You can think of GoF as an index of average prediction for the entire model. Although this is
not entirely exact, it helps to understand GoF values. From this point of view, a GoF value
of 0.689 could be roughly interpreted as if the prediction power of the model is of 69%. The
naive rule of thumb is: the higher, the better. GoF values greater than 0.7 are considered as
“very good” within the PLS-PM community.

105

5.5.8 Bootstrap Validation

Since PLS-PM does not rest on any distributional assumptions, resampling procedures are
used to obtain information about the variability of the parameter estimates. plspm() provides
bootstrap resampling to get confidence intervals for evaluating the precision of the PLS
parameter estimates. So far we haven’t required bootstrap validation because we needed to
check first that the results of the outer and inner models make sense. But now that we are
satisfied with the obtained results, we can proceed with the bootstrap validation. We use
the argument boot.val = TRUE to indicate that we wish to perform bootstrap validation.
By default plspm() runs 100 resamples but we can specify a different number. For instance,
let’s get a validation with br=200 resamples:

running bootstrap validation
edu_val = plspm(education, edu_path, edu_blocks3, modes = edu_modes,
boot.val = TRUE, br = 200)

bootstrap results
edu_val$boot

$weights

#it Original Mean.Boot Std.Error perc.025 perc.975
sup.help 0.4571 0.4570 0.022206 0.4143 0.4963
sup.safe 0.3747 0.3755 0.033703 0.3165 0.4539
sup.conc 0.4021 0.4024 0.026926 0.3506 0.4531
adv.comp 0.2652 0.2659 0.014300 0.2371 0.2896
adv.acces 0.2572 0.2583 0.018846 0.2263 0.2980
adv.comm 0.2879 0.2891 0.017785 0.2573 0.3291
adv.qual 0.2903 0.2910 0.012223 0.2705 0.3154
tut.prof 0.3024 0.3070 0.030564 0.2641 0.3815
tut.sched 0.3154 0.3203 0.028988 0.2712 0.3792
tut.stud 0.2974 0.2989 0.025552 0.2426 0.3475
tut.qual 0.2830 0.2756 0.027963 0.2166 0.3202
val.devel 0.2637 0.2626 0.009782 0.2443 0.2821
val.deci 0.2764 0.2766 0.010163 0.2582 0.2985
val .meet 0.2743 0.2747 0.009834 0.2578 0.2937
val.info 0.3137 0.3157 0.016386 0.2888 0.3485
sat.glad 0.3579 0.3578 0.010763 0.3400 0.3795
sat.expe 0.3543 0.3574 0.014224 0.3353 0.3870
sat.over 0.3807 0.3839 0.017428 0.3596 0.4236
loy.proud 0.3874 0.3945 0.035610 0.3410 0.4709
loy.recom 0.4082 0.4095 0.021787 0.3710 0.4606
loy.back 0.3447 0.3442 0.029452 0.2865 0.3975

106

#it
#Ht
#it
##
#it
#it
#it
#t
##
##
#it
#it
#it
##
##
#it
#it
#it
##
##
#it
#it
#Ht
#t
#H#
#it
#it
#it
#it
##
#it
#it
#it
#it
##
##
#it
#it
##
##
##

$loadings

Original Mean.
sup.help 0.8697 0
sup.safe 0.7631 0
sup.conc 0.7872 0
adv.comp 0.9061 0
adv.acces 0.8565 0
adv.comm 0.9165 0
adv.qual 0.9491 0
tut.prof 0.8772 0
tut.sched 0.8466 0
tut.stud 0.7746 0
tut.qual 0.8388 0
val.devel 0.8956 0
val.deci 0.8893 0
val .meet 0.9044 0
val.info 0.8604 0
sat.glad 0.9053 0
sat.expe 0.9125 0
sat.over 0.9264 0
loy.proud 0.8873 0
loy.recom 0.9246 0
loy.back 0.8089 0
$paths
Support -> Value

Support -> Satisfaction
Advising -> Value
Advising -> Satisfaction
Tutoring -> Value
Tutoring -> Satisfaction
Value -> Satisfaction
Satisfaction -> Loyalty

Original Mean.Boot Std.

$rsq
Value 0.6612
Satisfaction 0.6247

Loyalty 0.5837

Boot

.8684
. 7622
. 7846
.9014
.8521
.9140
.9472
.8752
.8439
L7728
.8291
.8942
. 8888
.9034
.8597
.8977
.9100
.9218
.8860
L9177
. 7959

Original Mean.Boot Std.
.67403
.09974
.16836
.37441
.07759
.12970
. 34497
.74742

0.
0
0
0
0.
0
0
0
0.6

0.6
0.5

Std.

O O O O O O OO OO OO OO OO0 OoO o oo

67021

.10043
.17273
.37640

08196

.13121
. 34927
. 76398

632
216
633

Error perc.025 perc.975

.02501
.04362
.03881
.02344
.03415
.02030
.01290
.02082
.02518
.05030
.056134
.01819
.02043
.01693
.02073
.03380
.02104
.01913
.02358
.02601
.05779

O O O O O O O O

0.04
0.07
0.09

0.

O O O O O O O OO OO O OO OoOoOoo o oo

967
062
815

8039

.6650
L6977
.8529
L7743
.8647
.9225
.8260
. 7956
.6589
L7177
.8564
.8421
.8706
.8203
.8125
.8622
.8817
.8356
.8666
.6573

O O O O O O O O

0.9120
.8381
. 8457
.9386
.9074
.9481
.9671
.9094
.8845
.8606
.9110
.9288
.9234
.9329
.8998
.9442
.9420
.9544
.9241
.9570
.8814

O O O O O OO OO OO0 OO OO OO o o

Error perc.025 perc.975

.04855 0.
.08666 -0.
.05041 0.
.08251
.06265 -
.05982
.09323
.06847

o O

o O O

57052
06921
08012

.21433
.02599
.02232
.17300
.59284

Error perc.025 perc.975

0.5557 0.7425
0.4968 0.7412
0.3515 0.7299

0.
.2600
.2627
.5201
.1757
.2428
.5427
.8543

O O O O O O O

7604

107

##

$total.efs

#it Original Mean.Boot Std.Error perc.025 perc.975
Support -> Advising 0.00000 0.00000 0.00000 0.00000 0.0000
Support -> Tutoring 0.00000 0.00000 0.00000 0.00000 0.0000
Support —> Value 0.67021 0.67403 0.04855 0.57052 0.7604
Support -> Satisfaction 0.33452 0.33243 0.06847 0.19932 0.4615
Support —-> Loyalty 0.25557 0.24796 0.05342 0.14299 0.3467
Advising -> Tutoring 0.00000 0.00000 0.00000 0.00000 0.0000
Advising -> Value 0.17273 0.16836 0.05041 0.08012 0.2627
Advising -> Satisfaction 0.43673 0.43203 0.08366 0.26294 0.6008
Advising -> Loyalty 0.33365 0.32495 0.07749 0.17384 0.4800
Tutoring -> Value 0.08196 0.07759 0.05265 -0.02599 0.1757
Tutoring -> Satisfaction 0.15983 0.15620 0.05943 0.04578 0.2587
Tutoring -> Loyalty 0.12211 0.11691 0.04553 0.03392 0.1926
Value -> Satisfaction 0.34927 0.34497 0.09323 0.17300 0.5427
Value -> Loyalty 0.26683 0.25783 0.07334 0.13017 0.3950
Satisfaction -> Loyalty 0.76398 0.74742 0.06847 0.59284 0.8543

We obtain bootstrapped results for the outer weights, the loadings, tha path coefficients, the
R? and the total effects. For each of the displayed results, we should examine the bootstrap
confidence interval (95%) provided by the percentiles 0.025 and 0.975. This is specially
important for the path coefficients

bootstrap path coefficients
edu_val$boot$paths

#i# Original Mean.Boot Std.Error perc.025 perc.975
Support -> Value 0.67021 0.67403 0.04855 0.57052 0.7604
Support -> Satisfaction 0.10043 0.09974 0.08666 -0.06921 0.2600
Advising -> Value 0.17273 0.16836 0.05041 0.08012 0.2627
Advising -> Satisfaction 0.37640 0.37441 0.08251 0.21433 0.5201
Tutoring -> Value 0.08196 0.07759 0.05265 -0.02599 0.1757
Tutoring -> Satisfaction 0.13121 0.12970 0.05982 0.02232 0.2428
Value -> Satisfaction 0.34927 0.34497 0.09323 0.17300 0.5427
Satisfaction -> Loyalty 0.76398 0.74742 0.06847 0.59284 0.8543

As you can see from the previous table, bootstrap intervals for the path coefficients of Support
on Satisfaction and Tutoring on Value contain the zero. Hence we may say that these
coefficients are not significant at a 5% confidence level.

108

5.5.9 Inspecting scores of latent variables

After checking the overall quality of the inner model and the prediction capacity, it is also
interesting to inspect the obtained scores of the latent variables. The values in $scores are
standardized scores (mean zero, unit variance), thus if we use summary () we won'’t get much
information:

summary of latent variable scores
summary (edu_pls3$scores)

#it Support Advising Tutoring Value
Min. :-3.148 Min. :-5.766 Min. :-4.090 Min. :-3.781
1st Qu.:-0.654 1st Qu.:-0.344 1st Qu.:-0.720 1st Qu.:-0.630

Median : 0.164 Median : 0.269 Median : 0.279 Median : 0.227
Mean : 0.000 Mean : 0.000 Mean : 0.000 Mean : 0.000
3rd Qu.: 0.760 3rd Qu.: 0.792 3rd Qu.: 0.824 3rd Qu.: 0.890
Max. :1.242 Max. : 0.792 Max. : 1.404 Max . : 1.085
Satisfaction Loyalty

Min. :—-6.644 Min. :—-6.493

1st Qu.:-0.451 1st Qu.:-0.247

Median : 0.323 Median : 0.576
Mean : 0.000 Mean 0.000
3rd Qu.: 0.665 3rd Qu.: 0.576
Max. : 0.665 Max. : 0.576

Instead of the summary() we can use a more informative alternative by plotting histograms
of each latent variable with the hist function:

This is the code to obtain the histograms in the figure above:

setting graphic layout and margin sizes
op = par(mfrow = c(2, 3), mar = c(4, 5, 2, 0.5))
for each score
for (j in 1:6) {
histogram (with probability density)

hist(edu_pls3$scores[, jl, freq = FALSE, xlab = , border = s
col = , main = colnames(edu_pls3$scores) [j])

add axes

axis(side = 1, col = , col.axis =)

axis(side = 2, col = , col.axis =)

}

par (op)

109

Support Advising Tutoring
N [le} [ty
2 > 2
@ o @ k7]
c ») c c
[} [j) o
[a} la} Q o
pa —
2 -1 1 4 2 1 4 2 -1 1
Value Satisfaction Loyalty
2 > - N
7] @ 2
c ! c c
[[[
[a] (a] [a]
\
i f‘ _/—vJ
—

Figure 5.13: Histograms (in densities) of scores

Rescaling Scores

Because all the manifest variables in education are expressed in the same scale (from 1 to
7), it would be interesting and convenient to have the scores of the latent variables expressed
in the same scale as the indicators. This can be done by normalizing the outer weights in
each block of indicators so that the weights are expressed as proportions. However, in order
to apply this normalization all the outer weights must be positive.

You can apply the function rescale() to the object edu pls3 and get scores expressed in
the original scale of the manifest variables. Once you get the rescaled scores you can use
summary () to verify that the obtained results make sense (i.e. scores expressed in original
scale of indicators):

rescaling scores
Scores = rescale(edu_pls3)

summary
summary (Scores)

110

#it Support Advising Tutoring Value

Min. :1.61 Min. :1.23 Min. :1.77 Min. :1.28
1st Qu.:4.67 1st Qu.:6.00 1st Qu.:5.00 1st Qu.:5.00
Median :5.65 Median :6.53 Median :5.98 Median :6.00
Mean :5.47 Mean :6.30 Mean :5.67 Mean :5.71
3rd Qu.:6.37 3rd Qu.:7.00 3rd Qu.:6.48 3rd Qu.:6.76
Max. :7.00 Max. :7.00 Max. :7.00 Max. :7.00
Satisfaction Loyalty

Min. :1.00 Min. :1.00

1st Qu.:6.00 1st Qu.:6.34

Median :6.68 Median :7.00

Mean :6.44 Mean :6.51

3rd Qu.:7.00 3rd Qu.:7.00

Max. :7.00 Max. :7.00

With the rescaled Scores we can create another graphic with histograms to see the distri-
butions of the latent variables in a more meaningful way:

setting graphic layout and margin sizes

op = par(mfrow = c(2,3), mar = c(4, 5, 2, 1.5), bty =)
for each score
for (j in 1:6)
{
histogram (not showing axes)
hist(Scores[,j], main = colnames(Scores) [j], axes = FALSE,

xlim = ¢(1,7), ylim = c(0, 125), xlab = s

border = , col =)
add horizontal axis
axis(side = 1, col = , col.axis =)
add vertical axis
axis(side = 2, col = , col.axis = , las = 2)

}

resetting default graphical parameters
par (op)

Another graphical tool that we can apply is to get scatter plots with the function pairs()

scatter plots of rescaled scores

pairs(Scores, pch = 19, cex = 0.7, col = , cex.axis = 0.8,
col.axis = , gap = 0.5)

111

Support Advising Tutoring

Frequency
Frequency
Frequency

_corfl] il rﬂﬂﬂ

Value Satisfaction Loyalty

Frequency
Frequency
Frequency

_ ;|

Figure 5.14: Histograms of rescaled scores
5.6 Guidelines for a PLS-PM analysis

We’ll end this chapter by providing some general guidelines and advices for performing PLS
Path Modeling analysis.

Urban Legend First we need to address one important issue that you will often find about
why to use PLS-PM: “because it makes no sample size assumptions and you can even use it
with small sample sizes”. This is one of the not-so-accurate claims that many people make
about PLS-PM. Although it is true that PLS-PM does not impose sample size restrictions,
this does not mean that you can abuse by applying it with ridiculously small sample sizes.

Rule of thumb The only thing for sure we can say is that there is no rule of thumb about
a minimum number of observations that can be applied to all situations. In fact, how large
or small the sample size should be is something that depends on various factors: the strength
of the relationships between the variables, the complexity of the model, the proportion of
missing values, and even the distribution of the observed variables.

112

In the article The Partial Least Squares Approach to Structural Equation Modeling, Wynne
Chin (1998) provides some recommendations:

“If one were to use a regression heuristic of 10 cases per indicator, the sample
size requirement would be 10 times either: a) the block with the largest number
of indicators; or b) the largest structural equation”

In another publication, Structural FEquation Modeling Analysis with Small Samples Using
Partial Least Squares, Wynne Chin and Peter Newsted (1999) make it clear that for the
sample size for PLS path models to be determined, requires “a power analysis based on the
portion of the model with the largest number of predictors”.

Consistency at Large The concept that we should keep in mind is the so-called consis-
tency at large which basically means:

e The larger the sample size, the better: PLS estimates improve as sample size increases;
and their average absolute error rates diminish .

e The more indicators per latent variable, and the larger the number of observations, the
better PLS estimates you’ll get.

Some Personal Tips and Advices

#1 Get to know your data Seriously. Spend as much time as possible “chatting” with
your data. Above all: visualize it! Do barplots, scatter plots, histograms, glyphs, PCA plots,
dendrograms, you name it. Also, get summary statistics, measures of dispersion. I can hardly
stress out all the positive effects that you can achieve by getting to know your data, but be
assured that they are enormous.

#2 Talk to the “experts” By experts [mean the people running the business of your
data, either those who designed the survey, those who you are consulting for, or those who
have the big picture of the field you are working in. Maybe you are the expert. In that case,
go and talk to other experts, ask for a second opinion of what you are doing; whether your
model and its underlying hypotheses make sense.

#3 Read papers See what other people are doing; how do they draw the diagrams, what
jargon and argot they use, how do they report the results, etc. Get inspired and steal like
an artist (but don’t plagiarize, please).

113

#4 Learn to lose Face it: sometimes the data in your hands does not cooperate with you.
Maybe the data is simply crap or maybe is not suited for PLS-PM. The worst you can do
is forcing fitting a model. I've tried to force models, sometimes working-around and finding
a non-trivial solution. But most of the times I will eventually realize that there is nothing
I can do. This is specially the case when somebody has a dataset and wants stubbornly to
do something with it. Perhaps a researcher wants to publish a paper or prepare a talk, and
they will ask you to do some magic with PLS-PM (or any other method). That’s the time
when you have to learn to say no.

#5 Be cautious Specially when you are mixing very different types of data. For instance,
you may have observational data like macroeconomic indices or demographic statistics, and
then you also have perception data. It’s like trying to mix oil and water: economic indices
with poeple’s thoughts. That’s a combination that you need to handle with tweezers, specially
when drawing any type of conclusion. I'm not saying that you shouldn’t do it, I'm just saying
be cautious.

#6 Practice, practice, practice As with any other skill that you want to master (like
a sport, hobby, language, etc) you need to practice as much as possible to be a PLS ninja.
I don’t have a recipe for you that allows you to learn PLS-PM in 30 minutes or something
like that. My best advice is to practice, and if possible, get to work under the guidance of a
PLS-PM guru.

5.7 Reading List

ECSI Model in Education Some papers with applications of PLS Path Modeling to
Education:

e The Influence of University Image in Student’s Expectations, Satisfaction and
Loyalty by Helena Alves and Mario Reposado (2007). Paper presented at the 29th
Annual EAIR Forum (Innbrusck, Austria).

e Measuring Student Oriented Quality in Higher Education: Application of the
ECSI Methodology by Anne Martensen, Lars Gronholdt, Jacob K. Eskildsen and
Kai Kristensen (1999). Paper presented at the conference TQM for Higher Education
Institutions II (Universita di Verona, Italy)

e Drivers of student satisfaction and loyalty at different levels of higher education
(HE) -cross-institutional results based on ECSI methodology by Dean Peder Os-
tergaard and Kai Kristensen (2005). Paper presented at the Society for Research into

114

Higher Education (SRHE) Available at:
http://pure.au.dk/portal/files/214/PAPER_SRHE_2005_SESSION_PAPER 6.31.PDF

Is the European Customer Satisfaction Index Model Applicable to Tertiary Educa-
tion? by Bill Chitty and Geoffrey N. Soutar (2004). Paper presented at the Australian
and New Zealand Marketing Academy (ANZMAC). Available at:
http://anzmac.info/conference/2004/papers/Chittyl.PDF

Evaluating the quality of the university educational process: an application of the
ECSI model by Bruno Chiandotto, Matilde Bini and Bruno Bertaccini. Available at:
http://valmon.ds.unifi.it/docpub/ECSI%20BCMBBB_engversion.pdf

PLS-PM analysis Other resources about PLS Path Modeling and how to carry out PLS-
PM analysis:

How to Write Up and Report PLS Analyses by Wynne Chin (2010). This is the
Chapter 28 of the Handbook of Partial Least Squares. This chapter describes the general
steps to be performed for writing a report on results from a PLS-PM analysis.

Evaluation of Structural Equation Models Using Partial Least Squares (PLS) Ap-
proach by Oliver Gotz, Kerstin Liehr-Gobbers and Manfred Krafft (2010). As Chapter
29 of the Handbook of Partial Least Squares, it provides a basic comprehension of PLS-
PM and it discussess key guidelines for evaluation of structural models.

The Use of Partial Least Squares Path Modeling in International Marketing by
Jorg Henseler, Christian Ringle and Rudolf R. Sinkovics (2009). This article in New
Challenges to International Marketing Advances in International Marketing (Vol. 20,
277 - 319) offers guidance for the use of PLS with an emphasis on reasearch studies on
marketing research. Covers the requirements, strengths and weaknesses of PLS-PM.

The Partial Least Squares to Structural Equation Modeling by Wynne Chin (1998).
As Chapter 10 of the book Modern Methods for Business Research (George A. Mar-
coulides editor; pp: 295-336), this article is one of the classic references of Chin when
he describes the PLS-PM methodology for a business research audience.

Structural Equation Modeling Analysis With Small Samples Using Partial Least
Squares by Wynne Chin and Peter Newsted (1999). This article in Chapter 12 of
the book Statistical Strategies for Small Sample Research (Rick H. Hoyle editor; pp:
307-341), provides a comprehensive overview of PLS-PM for non-statisticians.

PLS: A Silver Bullet? by George A. Marcoulides and Carol Saunders (2006). This
is an Editorial comment in the journal MIS Quarterly (Vol. 30, No. 2). The authors

http://pure.au.dk/portal/files/214/PAPER_SRHE_2005_SESSION_PAPER_6.31.PDF
http://anzmac.info/conference/2004/papers/Chitty1.PDF
http://valmon.ds.unifi.it/docpub/ECSI%20BCMBBB_engversion.pdf

115

express their concerns about claims made by a number of authors about taking PLS as
a magic wand that can be applied indiscriminately to all problems.

e A Critical Look at Partial Least Squares Modeling by George A. Marcoulides, Wynne
W. Chin and Carol Saunders (2009). This is the Foreword in the Special Issue Section
of the journal MIS Quarterly (Vol. 33, No. 1, 171-175). The authors express their
concerns about claims made by a number of authors about taking PLS as a magic
wand that can be applied indiscriminately to all problems.

116

Support

Advising

Tutoring

Value

Satisfaction

Loyalty

Figure 5.15: Scatter plots of latent variable scores

Chapter 6
Comparing Groups

In the previous chapters we’ve been discussing a lot of information related to the basics
of PLS Path Modeling. But now it’s time to take it to the next level. In this and the
following chapters, we are going to review some of the topics that cover a range of additional
modeling tasks like group comparisons, higher-order constructs, moderating effects, and class
detection. As we move forward, you may feel the need to reread parts of the material exposed
in the earlier sections. That’s totally fine and there’s nothing to worry about that; PLS Path
Modeling is not something you learn in a couple of days after reading one book. The present
chapter is dedicated to multi-group comparison or multiple group analysis. To start moving
into deep water we’ll begin with the challenging question of how to compare groups in PLS-
PM.

6.1 The million dollar question

Let’s face it: often, estimating one single PLS path model is not enough. I'm not referring to
play with one model under slightly different configurations. I'm talking about dealing with
information from different groups in data. For instance, when we work with survey data it is
almost inevitable to have demographic information like the gender or age of the respondants.
When you have groups for females and males, you ask yourself about possible differences
between the two genders. This is an issue that has to do with the comparison of path models
which leads us to the fundamental question of:

Given two structural models, how can they be compared?

Why is this question so important? Because given the complexity of path models in general,
the truth is that there is no simple answer for it. In fact, path models may be different at so
many levels that there are many ways in which they can be compared. Broadly speaking we
have four major types of differences:

117

118

e Differences at the causal network level: this refers to differences in the as-
sumed causal-effect network linking the latent variables. Take for example the case
of teenagers and adult consumers; while two latent variables may be positively corre-
lated for teenagers, the same latent variables may be uncorrelated for adults. In other
words, the two latent variables would be connected in the teenagers model but not in
the model of adults.

e Differences at the structural level: this involves differences in magnitude of the
structural coefficients (i.e. the path coefficients). For instance, there may be two groups
of customers: in one group satisfaction is driven by the perceived value of the product
they consume, whereas satisfaction in the other group is driven by the perceived quality.

e Differences at the measurement level: this refers to the way in which the latent
variables are defined by their indicators. While one indicator may be appropriate for
some construct in one model, the same indicator may not be appropriated in another
model.

e Differences at the latent variables level: this implies that the mean value (or
other distribution characteristic) of latent variables across models may be different.
For example, the mean value of Satisfaction may vary across groups in terms of marital
status (e.g, single, married, divorced, etc).

In principle, none of the above levels is better or worse than the others. You can legiti-
mately ask whether two models are different at the latent variables’ distribution level. For
instance, let’s say we have a model about perception of gay marriage in the USA based on
survey data, and that we have information on the political affiliation of the respondants. We
could calculate a model for democrats and another model for republicans, and then compare
the differences among the latent variables of each model. We could also look into possible
differences in the indicators used in each model. Maybe there is a manifest variable that,
for whatever reason, is only applicable to democrats. However, given that the main attrac-
tive feature of path models is in the inner part with the estimation of path coefficients, the
traditional approach to compare path models focuses on differences at the structural level.

It’s not hard to understand why people put an emphasis on comparing models by taking into
account differences only at the structural level. The rationale for focusing on the structural
coefficients involves the goals in path modeling with latent variables: estimate the linear
relationships among constructs. Hence, we pay attention to the differences in the magnitude
of the cause-effect relationships among constructs.

Of course, this standpoint is not without its weak points. The main limitation is that the
rest of potential differences (network level, measurement level, and construct distributions
level) are practically ignored. By paying attention to only differences in path coefficients,
the structural network has to be the same across groups, otherwise we would be comparing
completely different models. Also, to have a fair comparison of path coefficients across groups,

119

no differences at the measurement level should be desirable; implying that the indicators has
to be the same among models. Finally, regarding the option of comparing models at the
latent variables level is often relegated to subsequent analyses of a more exploratory and
descriptive nature.

6.2 Group Comparison Approaches

For the sake of convenience and following the tradition within the PLS-PM framework, T’ll
give priority to group differences at the structural level. This implies focusing on the path
coefficients, although most of what we say could be applied to other parameters (outer
weights, loadings, R2, gof index). In addition, I will suppose that we have a categorical
variable defining the groups. The default example would be having the categorical variable
gender; but you could also have things like ethnic group, income level, education level,
geographic region, culture, etc.

Multi-group analysis? Not really. Just bi-group analysis

Even though comparing groups is also called as “multi-group comparison” or “multiple group
analysis”, the truth is that most of the time the analysis focuses on only two groups. Why?
Because it’s so much easier! Thus, in practice we should talk about bi-group analysis instead
of multi-group analysis. This, of course, is not exactly what we want when our categorical
variable has more than two categories. When this happens, the suggestion is to break down
your analysis in groups of two. Say you have a variable Size with three categories small,
medium and large. To do a multigroup analysis considering all the three categories you
would need to compare:

small -vs- medium and large
medium -vs- small and large

large -vs- small and medium

Two major approaches

PLS Path Modeling approaches for comparing groups can be classified in two major cate-
gories: 1) resampling methods and 2) moderating effects.

e Resampling methods, as the name implies, involve performing some type of resam-
pling procedure to test the difference between groups. The most popular options are
the bootstrap t-test and the permutation procedure. These approaches are discussed in
this chapter.

120

e Moderating effects implies treating the group variable (e.g. gender) as a moderator
variable and then apply one of the techniques used for testing moderating effects. Since
moderating effects are not limited to only categorical variables, this approach has its
own dedicated chapter (see chapter 7).

The resampling methods of this chapter (bootstrapping and permutation) apply computing
power to relax some of the conditions needed for traditional inference. However, the main
notions of statistical inference remain the same so we can answer the fundamental question:
“What would happen if we applied this method many times?” Using these methods we
can get sampling distributions of statistics that show what would happen if we took many
samples under the same conditions.

6.2.1 Bootstrap t-test

This resampling approach for comparing groups involves using a t-test based on bootstrap
resamples. The procedure consists of separating the data into groups and then running
bootstrap samples with replacement for each group. Path coefficients are calculated in each
resampling and the standard error estimates are treated in a parametric sense via a t-test.
Because we use a parametric t-test as well as bootstrap resamples, this method is also referred
to as a resampling parametric approach.

To illustrate the basic idea of the bootstrap t-test, suppose we have two groups G; and
G5 with sample sizes of n; and no, respectively. Let’s imagine that we want to compare
a given path coefficient between both groups: ﬁjGil against Bﬁ? The question is: Are the
path coefficients similarly enough to be considered the same? To find out whether the path
coefficients are similar we do the following:

1. Calculate a PLS path model for each group to obtain path coefficients ﬁjGil and 5;52.
Separate the data into groups and run bootstrap samples for each group.
For each sample, calculate a PLS path model to obtain resampling path coefficients.

After running all the resamples (say 200 times), calculate the standard error estimates.

AT e B

Use the standard error estimates in a parametric sense via a t-test.

The formula that we use for the t-test statistic is:

Path — PathS?

which follows a t-distribution with n; + ny — 2 degrees of freedom

121

As you can see from the previous formula, there is a special term in the denominator: Sp;
this is the estimator of the pooled variance and is obtained as follows:

—1)2 —1)2
Sp:\/((1 opp 4 2= D° g

n1+n2—2) = (n1+n2—2)

where SEq, and SEg, are the bootstrap Standard Errors of each group.

Keep in mind that the bootstrap procedure still depends on the assumptions of a t-test which
relies on two major conditions: normal distributed data and similar sample size of groups.
It is true that t procedures are useful in practice because they are robust. However, when
the data have less symmetric distributions, and the size of the groups are very different, the
application of the bootstrap t-test wil be limited. This is often the case when we have data
like opinions from customer satisfaction studies in which the distribution of the variables are
strongly skewed. Unless our samples are quite large, you can expect the performance of the
test to be deficient.

6.2.2 Permutation Procedure

Another type of resampling approach is based on randomization or permutation procedures.
Compared to bootstrap samples (which are drawn with replacement), permutation resamples
are drawn without replacement. The basic premise of this kind of test is to use the assumption
that it is possible that all of the groups are equivalent, and that every member of the group
is the same before sampling began. From this, one can calculate a statistic and then observe
the extent to which this statistic is special by seeing how likely it would be if the group
assignments had been jumbled /mixed.

Again, to illustrate the basic idea of a permutation test, suppose we have two groups G
and Gy with path coefficients BjGil and /BjGiz, and sample sizes of n; and ns, respectively.
The permutation test is designed to determine whether the observed difference between the
path coefficients is large enough to reject the null hypothesis Hy that the two groups can be
considered identical. The test proceeds as follows:

1. First, we calculate the test statistic for the data. In our case the test statistic is the
difference of path coefficients between the two groups.

2. Then we combine the observations of groups (G; and G into a single large group.

3. Next, the data are permuted (divided or rearranged) repeatedly in a manner consistent
with the random assignment procedure. Each permutation implies:

e dividing data in two groups of size ny; and no

e estimating the PLS models for each group

122

e calculating and recording the test statistic

The set of calculated differences is the distribution of possible differences under
the null hypothesis that group label does not matter.

4. Then, we sort the recorded differences and we check if the original test statistic is
contained within say the middle 95% of the sorted values. If it does not, we reject the
null hypothesis of identical groups at the 5% significance level.

The main attractive of the permutation procedure is that is a distribution-free test that
requires no parametric assumptions. Among the advantages of permutation tests we have
that: 1) they do not require specific population shapes such as Normality; 2) they apply to
a variety of statistics, not just to statistics that have a simple distribution under the null
hypothesis; 3) they can give very accurate P-values, regardless of the shape and size of the
population (if enough permutations are used).

6.2.3 Case Study: College GPA

The case study for this chapter is based on data of college students (from a university in
California, USA) with undergraduate degrees in life sciences majors. The dataset comes
with the package plspm under the name college. To load the data in your R session use
the data() function:

only if you haven't load plspm
library (plspm)

load data college
data(college)

what does the data look like
head(college, n = 5)

HS_GPA SAT_Verbal SAT_Math Biologyl Chemistryl Mathl Physicsl

1 4.18 650 630 4.0 4.0 4.0 4
2 4.15 600 770 3.0 4.0 4.0 3
3 4.65 460 590 4.0 3.7 4.0 4
4 4.12 490 630 3.7 4.0 3.7 3
5 4.54 540 680 3.0 2.7 3.7 3
Biology2 Chemistry2 Math2 Physics2 FinalGPA Gender
1 4.0 4 3.7 4.0 3.952 MALE
2 2.7 3 4.0 3.4 3.352 MALE
3 4.0 4 3.0 3.4 3.633 MALE
4 3.0 4 4.0 3.4 3.737 FEMALE
5 3.0 2 2.0 3.0 3.281 FEMALE

123

The following table gives the description of each variable:

Table 6.1: Description of variables in data college
Variable Description
HS_GPA High School GPA
SAT Verbal Verbal SAT score
SAT Math Math SAT score
Biology1l Introductory Biology
Chemistryl Introductory Chemistry
Mathl Calculus 1
Physics1 Introductory Physics
Biology2 Intermediate Biology
Chemistry2 Intermediate Chemistry
Math2 Calculus 2
Physics2 Intermediate Physics
FinalGPA Graduation GPA
Gender Gender

In addition to head(), we can also use the function str() to get a detailed description of
the structure of the data:

what's the structure?
str(college)

'data.frame': 352 obs. of 13 variables:

$ HS_GPA :num 4.18 4.15 4.65 4.12 4.54 4.16 4.2 3.93 4.18 4.6 ...
§ SAT_Verbal: int 650 600 460 490 540 640 540 620 660 630 ...

¢$ SAT_Math : int 630 770 590 630 680 640 690 640 720 800 ...

¢ Biologyl : num 4 3 4 3.7 3 2.7 22.42.74 ...

$ Chemistryl: num 4 4 3.7 4 2.7 42 2 2.7 4 ...

$ Mathl :num 4 44 3.73.7433.744.

§$ Physicsl : num 4 3 4 3 3 3.7 2.432.44.

$ Biology2 : num 4 2.7 4 33422.42 3.4

$ Chemistry2: num 4 3 44 2 3.422.704 :

$ Math2 :num 3.7 43423.41.72.723.7 ...

¢ Physics2 : num 4 3.4 3.4 3.43322.72.43.7 ...

¢ FinalGPA : num 3.95 3.35 3.63 3.74 3.28 ...

§ Gender : Factor w/ 2 levels "FEMALE","MALE": 2 221111221 ...

As you can see, college is a data.frame containing 352 observations and 13 variables. The
function str() also displays the storage mode of each variable as well as the first ten values
of each variable. This is useful when we want to not only take a quick glance at the data but
also to know the kind of treatment R is giving to the variables. Notice that Gender is being
treated as a factor (i.e. a categorical variable). This is the grouping variable that we will

124

take into account to perform a group analysis: comparing the performance between female
and male students.

Your high school performance predicts your college GPA?

It is often said that your performance in high school will be one of the key factors affecting
your performance in college. Particularly in the United States, the high school GPA (Grade
Point Average) is taken as the indicator of how well a student will do in college. When
high school students apply to college, besides submitting their GPA they also need to submit
the obtained scores in the SAT test (formerly called the Scholastic Assessment Test). The
SAT test is a standardized test for college admissions in the USA and is intended to assess
a student’s academic readiness for college. Before 2006, the SAT test was divided in a Math
section and a Verbal section.

Toy Model

We are going to play with a toy model based on a simple progressive sequence depicted in the
diagram shown below. Basically, the premise behind the model is: “how well a student does
in college (Final GPA) is affected by how well she does in the intermediate and introductory
courses, as well as how well prepared she was in high school”.

High School
Readiness

Introductory Intermediate
Courses Courses

Figure 6.1: College GPA Model

125

Defining the complete path model

The manifest variables in college can be grouped in four blocks as follows:

High School Readiness
High School GPA
High School Math SAT Scores
High School Verbal SAT Scores

Introductory Courses
Biology 1: Evolution & Ecology
Chemistry 1: General Chemistry
Physics 1: Introductory Physics 1
Math 1: Calculus I

Intermediate Courses
Biology 2: Molecular & Cell Biology
Chemistry 2: Organic Chemistry
Physics 2: Introductory Physics 11
Math 2: Calculus II

Graduation

Final GPA

The entire model is represented in the following path diagram:

6.2.4 PLS-PM Analysis: GPA Model

Let’s start by performing a PLS-PM analysis on all 352 students. The first step is to define
the required parameters for the plspm() function: the path model matrix, the list of blocks
for the outer model, and the vector of modes.

126

High School
Readiness

Introductory Intermediate
Courses Courses

Figure 6.2: College GPA Model

path matrix (inner model)

HighSchool = c(0, 0, 0, 0)

Intro = ¢c(1, 0, 0, 0)

Medium = c(1, 1, 0, 0)

Graduation = c(1, 1, 1, 0)

gpa_path = rbind(HighSchool, Intro, Medium, Graduation)

list of blocks (outer model)
gpa_blocks = list(1:3, 4:7, 8:11, 12)

vector of reflective modes
gpa_modes = rep("A", 4)

Once we define the main ingredients, let’s apply plspm() asking for bootstrap validation
with the argument boot.val=TRUE

apply plspm
gpa_pls = plspm(college, gpa_path, gpa_blocks, modes = gpa_modes,
boot.val = TRUE)

Let’s see the results of the inner model

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

127

plot path coefficients

plo

As you can see from the path diagram, High School Readiness (HighSchool) has a positive
effect on the Introductory courses (Intro) but it has a negative effect on the Intermediate
courses (Medium) and on the Final GPA (Graduation). On the other hand, Intro has positive
coefficients on both Medium and Graduation. In turn, Medium has also a positive effect on
Graduation. To assess how relevant these results are we should check the bootstrapped path

t(gpa_pls)

Intro

HighSchool

0.4531

0.7996
N

éF:(lO46
0.3438

Medium

, —0.0488
N

Graduation

70.6439

Figure 6.3: Inner model with path coefficients

coeflicients:

bootstrapped path coefficients
gpa_pls$boot$paths

##
#it
#it
#it
#it
##
#it
#it
#it
#it

HighSchool -> Intro
HighSchool -> Medium

Original Mean.Boot Std.
.04049
.03773

0.45308
-0.04603

HighSchool -> Graduation -0.04885

Intro -> Medium
Intro -> Graduation
Medium -> Graduation

HighSchool -> Intro
HighSchool -> Medium

0.79956
0.34382
0.64385
perc.975
0.529409
0.035321

0.45556
-0.04227
-0.04608

0.79903

0.34283

0.64371

O O O O O O

Error

.02178
.02366
.04325
.03805

perc.025

.37493
.10142
.08753
. 75674
.23786
.57361

128

HighSchool -> Graduation -0.008007

Intro —-> Medium 0.842004
Intro -> Graduation 0.411008
Medium -> Graduation 0.709784

It turns out that the effect of HighSchool on the Intermediate courses (Medium) is not
that important since its bootstrap confidence interval contains the zero. The rest of path
coefficients are significantly different from zero although the negative value of HighSchool
on Graduation is very small.

From the obtained results, we may say that a student’s final GPA has not that much to do
with how well prepared she was in high school. It seems that how well students do in college
is definitely more affected by how they do along the different courses they take. Only at the
introductory level courses, the high school readiness has an important influence.

6.2.5 Female and Male Student Models

Given that we have information about the gender of the students, we may want to examine
whether there is a difference between females and males. To do that, the next step is to
calculate PLS Path Models separately for female and male students. First let’s get a model
for the females. We already have the inner model matrix, the outer model list, and the
modes vector; the extra ingredient we need for plspm() is the dataset involving only female
students. This is how we can estimate the model for the girls:

select data of female students
female = collegel[college$Gender == ,]

female students plspm
female_gpa_pls = plspm(female, gpa_path, gpa_blocks, modes = gpa_modes)

Now let’s calculate a model for the male students:

select data of male students
male = collegel[college$Gender == ,]

male students plspm
male_gpa_pls = plspm(male, gpa_path, gpa_blocks, modes = gpa_modes)

In order to compare both models, we can examine the path coefficients of the structural
models:

plot path coefficients
plot(female_gpa_pls, box.size = 0.14)

129

plot(male_gpa_pls, box.size = 0.14)

Female Male
HighSchool HighSchool
v —-0.0432 ¢ -0.0628
" 0.4278 " 05
-0.0679 _ 1 0.0107 _
Intro - Graduatic Intro = o Graduatic
0.2886 0.437
,\0.814 y, ,\0.7775 y,
7 0.6843 " 0.5805
Medium Medium

Figure 6.4: Path Coeflicients of Female and Male Students

Numerically, we have different path coefficients between both models. This is what we would
expect to happen in real life because of differences in the data. But the important question is
how different the path coefficients really are?. Let’s take the effect of HighSchool on Intro
for example. It has a value of 0.4278 in Female students and 0.5 in Male students. For
some people this might be a considerable difference while for others it might be something
negligible. We definitely need to perform some group analysis to get a verdict.

6.3 Comparing Groups: Bootstrap t-test

plspm comes with the function plspm.groups() that allows us to apply the bootstrap ap-
proach and the permutation approach to compare groups in PLS Path Modeling. The stan-
dard usage of plspm.groups() is:

plspm.groups(pls, group, method, reps)

The first argument pls is an object of class "plspm"; group must be a categorical variable
(codified as an R factor) with two levels indicating the groups to be compared; method
indicates the applied approach; and reps is the number of resamples (100 by default).

130

In order to apply the bootstrap procedure we use the parameter method="bootstrap":

apply plspm.groups bootstrap
gpa_boot = plspm.groups(gpa_pls, college$Gender, method =)

see the results

gpa_boot

GROUP COMPARISON IN PLS-PM FOR PATH COEFFICIENTS

##

Scale of Data: TRUE

Weighting Scheme: centroid

Selected method: bootstrap

Num of replicates: 100

##

$test

Hit global group.FEMALE group.MALE diff.abs
HighSchool->Intro 0.4531 0.4278 0.5000 0.0722
HighSchool->Medium -0.0460 -0.0679 0.0107 0.0786
HighSchool->Graduation -0.0488 -0.0432 -0.0628 0.0197
Intro->Medium 0.7996 0.8140 0.7775 0.0365
Intro->Graduation 0.3438 0.2886 0.4370 0.1484
Medium->Graduation 0.6439 0.6843 0.5805 0.1038
#it t.stat deg.fr p.value sig.05

HighSchool->Intro 0.8061 350 0.2104 no

HighSchool->Medium 1.1477 350 0.1259 no

HighSchool->Graduation 0.7484 350 0.2274 no

Intro->Medium 0.8168 350 0.2073 no

Intro->Graduation 1.5996 350 0.0553 no

Medium->Graduation 1.1636 350 0.1227 no

##

Inner models in the following objects:

$global

$groupl

$group?2

The first part of the output is a description with the specified parameters: scaled and
scheme belong to the arguments specified in pls; the method and the replicates belong to
the selected approaches and the number of resamples.

The second part is the data frame contained in $test. The first column global shows the
path coefficients of the global model; the second and third columns show the path coefficients
of the compared groups (FEMALE and MALE, respectively). The fourth column diff.abs is

131

the absolute difference of path coefficients between female and male studetns. Then we have
the columns t.stat, deg.fr, and p.value that contain the statistic of the t-test with its
degrees of freedom and the associated p-value. The last column sig.05 is just an auxiliary
label to indicate whether the difference in path coefficients is significant at the 5% level. As
we can see from the obtained results, none of the path coefficients between females and males
are significantly different.

6.4 Comparing Groups: Permutation test

In order to apply the permutation procedure we have to specify the parameter method =
"permutation" inside the function plspm.groups():

apply plspm.groups premutation
gpa_perm = plspm.groups(gpa_pls, college$Gender, method =)

see the results

gpa_perm
GROUP COMPARISON IN PLS-PM FOR PATH COEFFICIENTS

##

Scale of Data: TRUE

Weighting Scheme: centroid

Selected method: permutation

Num of replicates: 100

HH#

$test

#i# global group.FEMALE group.MALE diff.abs
HighSchool->Intro 0.4531 0.4278 0.5000 0.0722
HighSchool->Medium -0.0460 -0.0679 0.0107 0.0786
HighSchool->Graduation -0.0488 -0.0432 -0.0628 0.0197
Intro->Medium 0.7996 0.8140 0.7775 0.0365
Intro->Graduation 0.3438 0.2886 0.4370 0.1484
Medium->Graduation 0.6439 0.6843 0.5805 0.1038
#i#t p.value sig.05

HighSchool->Intro 0.4059 no

HighSchool->Medium 0.3069 no

HighSchool->Graduation 0.5545 no

Intro-—>Medium 0.5050 no

Intro->Graduation 0.1386 no

Medium->Graduation 0.2277 no

##

132

Inner models in the following objects:
$global
$groupl
$group?2

The output in this case is very similar to the bootstrap procedure except that that data frame
$test only contains the p-value. As we the bootstrap t-test, none of the path coefficients’
differences are significant (at the 5% level).

Show me the numbers

Finally, we can get an additional visualization of the differences in path coefficients between
females by creating a barplot like this one:

Path coefficients of Female and Male Students

1.0 —
female ® male
0.8 —
0.6 -
0.4 —
0.2
0.0 E
E 5 S 5 s s
— ° @ ie) @ @
? : = : = =
5 = g 2 g g
2 | O | O O
3 g ? £ ; ?
2 < ° = < £
=) A o = 3
I < S = °
=) %))
T g} =
T

Figure 6.5: Barplot of path coefficients between female and male students

path coefficients between female and male students
barplot(t(as.matrix(gpa_boot$test[,2:3])), border = NA, beside = TRUE,
col = c("#FEB24C","#74A9CF"), las = 2, ylim = c(-0.1, 1),

133

cex.names = 0.8, col.axis =
add horizontal line
abline(h = 0, col =)
add itle
title(

cex.main = 0.95, col.main =

add legend
legend(, legend

c(s

, cex.axis

), pt.bg = c(

= 0.8)

ncol = 2, pch = 22, col = c(,), bty = ,
text.col =)

6.5 Reading List

e Multi-Group analysis with PLS by Wynne Chin (2000) In his outdated but still ac-
tive website, Wynne Chin describes the bootstrap t-test for multi-group comparisons.
Available online in the section Frequently Asked Questions - Partial Least Squares €
PLS-Graph at:

http://disc-nt.cba.uh.edu/chin/plsfaq/multigroup.htm

An Introduction to a Permutation Based Procedure for Multi-Group PLS Analysis
by Wynne Chin and Jens Dibbern (2010). Published as Chapter 7 of the Handbook
of Partial Least Squares, this article provides a basic introduction to the permutation
approach for multi-group comparison. Wynne and Jens also provide a simple example
application of cross-cultural analysis with an Information System model.

Use of ULS-SEM and PLS-SEM to Measure a Group Effect in a Regression Model
Relating Two Blocks of Binary Variables by Michel Tenenhaus, Emmanuelle Mauger
and Christiane Guinot (2010). Published as Chapter 5 of the Handbook of Partial Least
Squares, this article proposes an interesting alternative way for comparing groups. Al-
though the discussed example in this article uses a covariance-based structural modeling
approach (ULS-SEM with AMOS 6.0), the methodology can be adapted to PLS-PM.

http://disc-nt.cba.uh.edu/chin/plsfaq/multigroup.htm

134

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

Chapter 7

Moderating Effects

One of the analysis tasks that arises from time to time when studying path models is the
examination of the so-called moderating effects, also known as interaction effects. In short,
this type of effect represents the influence that a third variable has on the relationship between
an independent and a dependent variable. This chapter is dedicated to show you how to test
moderating effects with plspm.

7.1 Moderator Variables

If you are dealing with testing moderating effects, chances are that you will encounter some
type of definition like the one below:

A moderating effect is caused by a variable (M) whose variation influences the
strength or the direction of a relationship between an independent variable (X)
and a dependent variable (Y').

If you are like me, don’t worry if you haven’t grasped the notion of a moderating effect
from the previous definition (you're not alone). A moderating effect is the fancy term that
some authors use to say that there is a nosy variable M influencing the effect between an
independent variable X and a dependent variable Y. Not surprinsingly, the nosy variable M
is called a moderator variable and it can be a qualitative or a quantitative variable. Common
examples of qualitative moderator variables are things like Gender or Ethnicity; in turn,
quantitative moderator variables are things like Age or Income.

Perhaps a better way to explain the concept of a moderating effect is by using a graphical
display. The following figure is a typical diagram showing the effect of a moderator variable.
We have three variables: an independent variable X, a dependent variable Y, and the moder-
ator variable M. It is assumed that there is a causal relationship between X and Y. The key

135

136

component in the diagram is the dashed arrow from M affecting the arrow between X and
Y. This dashed line represents the moderating effect of M, which is supposed to influence
the strength and/or direction that X has on Y.

independent dependent

X Y

moderator

Figure 7.1: Typical diagram illustrating the effect of a nosy moderator variable

This diagram is just for illustration purposes. Keep in mind that this diagram is an abstract
representation; it’s not a path diagram that you are supposed to figure out how to implement
in PLS-PM software.

7.2 Moderating effects in PLS-PM

The general concepts of moderating effects and moderator variables have their own adaptation
and representation in the PLS-PM world. Basically, there are two main options to study
moderating effects depending on the nature of the moderator variable:

e Group Comparisons This approach has to do when the moderator is qualitative (i.e.
categorical) like Age or Gender, or when the moderator can be categorized. In this case
we should use one of the methods discussed in Chapter 6 for comparing groups —plspm
comes with the function plspm.groups() that is designed to compare two models by
providing a categorical variable (an R factor) with two categories—.

e Moderator Constructs This approach has to do when the moderator variable is
treated as a latent variable. Under this approach, moderator variables are only consid-
ered in the inner model (the structural part of a path model).

137

7.2.1 Moderator variables as constructs

When moderator variables are to be included in the model, the most important thing you need
to know is that they have to be considered in the inner model. This means that moderating
effects are treated as latent variables. In PLS-PM, we can find four main ways to study the
effects of latent moderator variables:

e by using a Product Indicator Approach

e by using a Two-Stage Path Modeling Approach
e by using a Two-Stage Regression Approach

e by using a Categorical Variable Approach

In the following sections we’ll describe each of these approaches.

7.2.2 Case Study: Simplified Customer Satisfaction

In this example we are going to consider a simplified version of the Customer Satisfaction
Index model with three latent variables: Image, Satisfaction and Loyalty.

imagl
imag?2
imag3
loyl
loy2
loy3
satl
sat2
sat3

Figure 7.2: Simplified Customer Satisfaction Model

The model is focused on Loyalty and we are assuming that it depends on the Perceived Image
and the Customer Satisfaction. The better the Perceived Image as well as the Satisfaction,

138

the more Loyals will be the customers. To keep things simple, each block will have three
indicators. For whatever reason you like to think of, let’s assume that Image plays the role
of a moderator variable. That’s why there is a dashed arrow from Image to Satisfaction. In
summary, there is going to be a main effect of Image on Loyalty, but there is also going to
be a moderating effect of Image in the relationship between Satisfaction and Loyalty.

7.3 Product Indicator Approach

The first approach we will describe for analyzing moderating effects in PLS Path Modeling is
the Product Indicator Approach. In this approach we seek to create a new latent variable
that represents the interaction between the exogenous variable and the moderator variable.
How do we create this new latent variable? As its name says, the idea behind the Product
Inicator Approach is to build product terms between the indicators of the independent
latent variable and the indicators of the moderator latent variable. These product terms are
the indicators that we use for the latent interaction term in the structural model. Last but
not least, we always treat the created interaction construct as a reflective construct.

X1
X2
X1My
Y1
X1My { .
Interaction Yo
XM
XMy
Y3
XaMy
my
my

Figure 7.3: Diagram of a Product Indicator latent variable (XM)

A better way to understand the Product Indicator Approach is by looking at a simple ex-
ample shown in figure 2.3. Let’s say we have three reflective constructs: an exogenous X, a
moderator M (also exogenous), and an endogenous Y. Let’s suppose that X and M have
two indicators, and that Y has three indicators. To estimate the moderating effect, we need

139

to create a new latent interaction term X M whose indicators will be the products of the
indicators of X and M.

7.3.1 Example

Let’s see how to test for moderating effects with the Product Indicator Approach in plspm. As
we mentioned above, we will treat Image as the moderator variable in our simplified customer
satisfaction model: Image moderates the effect that Satisfaction has on Loyalty. This implies
that we will have three indicators (Image, Satisfaction, and Loyalty) plus a new latent
construct, Inter, representing the product interaction of Image and Satisfaction. The
new latent construct Inter will be measured by the product terms of the indicators of both
Image and Satisfaction. See the following diagram:

imag1l satl imagl

imagl sat2 imag2

imagl sat3 imag3

imag2 satl loyl
imag2 sat2 loy2
imag2 sat3 loy3
imag3 satl satl

imag3 sat2 sat2

imag3 sat3 sat3

Figure 7.4: Customer Satisfaction Model with a Product Indicator latent variable (Inter)

Step 1

First thigs first, let’s load the plspm package and let’s get the data satisfaction:

140

load package 'plspm'
library()

get data satisfaction
data(satisfaction)

Our initial step is to create the product-indicators of the new moderating latent variable
Inter. This means we need to calculate the products between the three indicators of Image
and the three indicators of Satisfaction. For convenience, we will “duplicate” the data
frame satisfaction in another data frame: satisfactioni;

duplicate satisfaction as satisfactionl
satisfactionl = satisfaction

how many columns in satisfactionl?
ncol(satisfactionl)

[1] 28

Once we have the new (duplicated) data frame we will add the product terms as new columns
in satisfactionl. To check we have more added columns simply inspect the number of
columns with ncol ()

create product indicator terms between Image and Satisfaction
satisfactionl$interl = satisfaction$imagl * satisfaction$satl

satisfactionl$inter2 = satisfaction$imagl * satisfaction$sat?2
satisfactionl$inter3 = satisfaction$imagl * satisfaction$sat3
satisfactionl$interd = satisfaction$imag2 * satisfaction$sati
satisfactionl$inter5 = satisfaction$imag2 * satisfaction$sat?2
satisfactionl$inter6 = satisfaction$imag? * satisfaction$sat3
satisfactionl$inter7 = satisfaction$imag3d * satisfaction$sati
satisfactionl$inter8 = satisfaction$imag3 * satisfaction$sat?2
satisfactionl$inter9 = satisfaction$imag3d * satisfaction$sat3

check again the number of columns in satisfactionl
ncol(satisfactionl)

[1] 37

Originally, the data satisfactionl contained 28 variables, but we added nine more variables
with the creation of the product-indicator terms. Now we should have a total of 37 columns
in the duplicated data set.

141

Step 2

We proceed as usual with the definition of the ingredients for our PLS-PM cook recipe: a
path matrix for the inner model, a list of blocks for the outer model list, and a vector for the
measurement modes. Additionally, we’ll run the plspm() function with bootstrap validation
(200 resamples).

create path matrix

rl = c(0, 0, 0, 0)

r2 = c(0, 0, 0, 0)

r3 = c(0, 0, 0, 0)

rd = c(1, 1, 1, 0)

prod_path = rbind(rl, r2, r3, r4)

rownames (prod_path) = c(,) ,)
colnames (prod_path) = c(, :))

define outer model list
prod_blocks = 1list(1:3, 29:37, 20:22, 24:26)

define reflective indicators
prod_modes = rep("A", 4)

run plspm analysis with bootstrap validation
prod_pls = plspm(satisfactionl, prod_path, prod_blocks, modes = prod_modes,
boot.val = TRUE, br = 200)

Step 3

After running the PLS-PM analysis, we check the obtained path coefficients:

check path coefficients
prod_pls$path_coefs

Hit Image Inter Satisfaction Loyalty
Image 0.0000 0.00000 0.0000 0
Inter 0.0000 0.00000 0.0000 0
Satisfaction 0.0000 0.00000 0.0000 0
Loyalty 0.2999 -0.04576 0.5226 0

Looking at the path coefficients you can see that the moderating product construct Inter
has a negative effect on Loyalty

142

plot inner model
plot (prod_pls)

Inter

Image

"7_0.0458

Satisfaction

2
S\p 999

Loyalty

7 0.5226

Figure 7.5: Inner model with path coefficients

In order to confirm the significance of the path coefficients, we need to check the bootstrap
results contained in $boot$paths:

check bootstrapped path coefficients
prod_pls$boot$paths

##
##
#it
#it
##
##
##
#it

Original Mean.Boot Std.Error perc.025

Image -> Loyalty 0.29995
Inter -> Loyalty -0.04576
Satisfaction -> Loyalty 0.52257

perc.975
Image -> Loyalty 0.5572
Inter -> Loyalty 0.2928
Satisfaction -> Loyalty 0.8581

0.31426
-0.06969
0.54001

0.1306

0.07353

0.2187 -0.55044

0.1471

0.25293

Even though Inter has a negative effect on Loyalty, its associated bootstrap confidence
interval contains the zero, having a non-significant effect. This means that the moderating

effect of Inter on the relation between Satisfaction and Loyalty is not significant.

143

7.4 Two-Stage Path Modeling Approach

Another approach for testing moderating effects is to use a two-stage path modeling
approach. As the name indicates, this approach involves two stages: the first stage consists
of applying a PLS-PM analysis without the interaction term; the second stage consists of
taking the scores obtained in the first stage for creating the interaction term, and then
perform a second PLS-PM analysis including the scores as indicators of the constructs:

First stage: PLS—PM without interaction term

Second Stage: PLS—PM with Interaction term

imagl
imag2
imag3
satl
sat2 Satisfaction
sat3
Image
Image x
Satisfaction
Satisfaction Satisfaction

CC BY-NC-SA 3.0 Gaston Sanchez

loyl

loy2

loy3

Loyalty

PLS Path Modeling with R

144

7.4.1 Example

To apply the Two-Stage Path Modeling Approach with plspm we begin with a first PLS-PM
analysis that includes just the main effects (no interaction terms).

Stage 1

We apply a first PLS-PM analysis with Image, Satisfaction and Loyalty:

create path matrix

f1 = c(0, 0, 0)

f2 = c(0, 0, 0)

£f3 = c(1, 1, 0)

first_path = rbind(f1, f2, £3)

rownames (first_path) = c(, 5)

define list of blocks
first_blocks = 1list(1:3, 20:22, 24:26)

define reflective indicators
first_modes = rep(, 3)

run plspm analysis
first_pls = plspm(satisfaction, first_path, first_blocks, modes = first_modes)

Stage 2: Step 1

The second stage involves applying another PLS-PM analysis but this time using the scores
obtained in the first stage. This implies that we use the latent variable scores from stage 1
in order to create the interaction term Inter = Image x Satisfaction. For convenience,
we can put the scores in data.frame format so we can plot their corresponding densities:

get the latent variable scores in data frame format
Scores = as.data.frame(first_pls$scores)

create the interaction term
Scores$Inter = Scores$Image * Scores$Satisfaction

let's see how Scores look like
head(Scores, n = 5)

145

#it Image Satisfaction Loyalty Inter
1 0.3363 -0.34526 0.4094 -0.116098
2 0.9700 0.39697 0.5686 0.385073
3 0.2747 0.79596 0.7571 0.218678
4 0.3184 0.02585 -0.6877 0.008232
5 0.8907 0.58825 0.7322 0.523935

To depict the densities of the scores, we can use the function density() and plot it with the
help of plot() and polygon()

setting graphical parameters
op = par(mfrow = c(2, 2), mar = c(4, 5, 2, 2), bty = "n")
for each scores
for (j in 1:4)
{
calculate density
score.dens = density(Scoresl[,j])
plot window but don't show the density
plot(score.dens, main = names(Scores) [j], xlab = "", type = "n'")
add polygon
polygon(score.dens$x, score.dens$y, col = "gray90", border = "gray30")
}
reset deafult values of graphical parameters
par (op)

146

Image Satisfaction
o
<t _ o
o
<
o
= > 92 4
D 5 ©
& — 5 o
a [T
— — —
[=}
_ o _|
e T T T T T T] e T T T T T T]
-4 -3 -2 -1 [0} 1 2 -4 -3 -2 -1 0 1 2
Loyalty Inter
o
< _ — 7]
o
< _|
™ o
> o 7 2 o _|
2 2 S
[} o <]
o S o <
< -
i
S T g _
o _| <
e T T T T T T] e T T]
-4 -3 -2 -1 0 1 2 0 5 10

Stage 2: Step 2

Once we created the interaction term Inter, the second stage consists of running another
PLS-PM analysis but now we replace the original indicators by the scores obtained in the
previous stage:

create path matrix
two_path = matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0),
nrow = 4, ncol = 4, byrow = TRUE)
rownames (two_path) = c(s s s)
colnames (two_path) = c(s s s)

define list of blocks
two_blocks = 1list(1, 4, 2, 3)

define reflective indicators
two_modes= rep(, 4)

run plspm analysis with bootstrap validation (200 resamples)
two_pls = plspm(Scores, two_path, two_blocks, modes = two_modes,
boot.val = TRUE, br = 200)

147

check bootstrap results
round (two_pls$boot$paths, 4)

#it Original Mean.Boot Std.Error perc.025
Image -> Loyalty 0.2769 0.2790 0.0669 0.1591
Inter -> Loyalty -0.0005 -0.0012 0.0499 -0.0954
Satisfaction -> Loyalty 0.4957 0.4930 0.0784 0.3428
#it perc.975
Image —-> Loyalty 0.4204
Inter -> Loyalty 0.0853

Satisfaction -> Loyalty 0.6481

plot inner model
plot (two_pls)

Image

4,0:2769

Inter Loyalty

"~ —5e-04

7 0.4957

Satisfaction

Figure 7.6: Inner model with path coefficients

As you can see, Inter has a very small effect on Loyalty, and its bootstrap confidence
interval contains the zero, having a non-significant effect. This means that the moderating
effect of Image on the relation between Satisfaction and Loyalty is not significant.

7.5 'Two-Stage Regression Approach

Another alternative for a two-stage procedure is the two-stage regression approach. The
first stage is exactly the same as the two-stage path modeling approach: we apply a PLS-PM
analysis without the interaction term. The second stage consists of taking the scores obtained

148

in the first stage but, instead of applying another PLS-PM analysis, we apply a regression
analysis with the scores of the first stage.

7.5.1 Example

To apply the Two-Stage Regression Approach with plspm we begin in the same way as we did
for the two-stage path modeling approach, that is, we start by running a PLS-PM analysis
that includes just the main effects (no interaction terms).

imagl

imag2 @

imag3 loyl
D -

satl loy3

sat2

sat3

Figure 7.7: First stage: PLS-PM without interaction term

Stage 1

For demonstration purposes, we will apply the first stage (which is the same one as in the
previous approach):

create path matrix

f1 = c(0, 0, 0)

f2 = c(0, 0, 0)

f3 =c(1, 1, 0)

reg_path = rbind(f1, f2, £3)

rownames (reg_path) = c("Image", "Satisfaction", "Loyalty")

define list of blocks
reg_blocks = 1list(1:3, 20:22, 24:26)

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

149

define reflective indicators
reg_modes = rep("A", 3)

run plspm analysis
reg_pls = plspm(satisfaction, reg_path, reg_blocks, modes = reg_modes)

Stage 2: Step 1

Once we obtained the scores for Image, Satisfaction and Loyalty, the second stage in-
volves creating the interaction term Inter = Image x Satisfaction, and then applying a
regression analysis:

Loyalty = byImage + bySatis faction + bgInter

Again, we will put the scores in data.frame format:

get the latent variable scores in data frame format
Scores = as.data.frame(reg_pls$scores)

create the interaction term
Scores$Inter = Scores$Image * Scores$Satisfaction

let's see how Scores look like
head(Scores, n = 5)

#it Image Satisfaction Loyalty Inter
1 0.3363 -0.34526 0.4094 -0.116098
2 0.9700 0.39697 0.5686 0.385073
3 0.2747 0.79596 0.7571 0.218678
4 0.3184 0.02585 -0.6877 0.008232
5 0.8907 0.58825 0.7322 0.523935

The path diagram of the second stage is illustrated in the figure below:

Stage 2: Step 2

To perform the regression analysis we will use function Im() (i.e. linear model) to get the
scores:

regression analysis
reg = 1lm(Loyalty ~ Image + Inter + Satisfaction - 1, data = Scores)

150

Image

Inter Loyalty

Satisfaction

Figure 7.8: Second Stage: Regression analysis including the Interaction term

check the coefficients
reg$coefficients

#it Image Inter Satisfaction
#it 0.2769506 -0.0002456 0.4957667

If we want to get a plot of the inner model with the path coefficients, we need to first define
an inner matrix and then use innerplot () like this:

define path matrix

cl =c(0, 0, 0, 0)

c2 = c(0, 0, 0, 0)

c3 = c(0, 0, 0, 0)

c4 = c(reg$coefficients, 0)

reg_path = rbind(cl, c2, c3, c4)

rownames (reg_path) c(s s s)
colnames(reg_path) c(s s s)

By default, innerplot() doesn’t show the values of an inner matrix, but we can use the
parameter show.values=TRUE to plot the path coefficients:

plot
innerplot (reg_path, show.values = TRUE)

Similar to the two-stage path modeling approach, we obtain a very small effect of Inter on

151

Image

o 0.277
™|

Inter Loyalty

—-2e-04

4
0.4958

Satisfaction

Figure 7.9: Inner model with path coefficients

Loyalty. The only “problem” is that we cannot perform a bootstrap validation with the
two-stage regression approach —at least not without programming some script in R—. In
any case, I wanted to show you both two-stage approaches so you can see how they work and
how you can apply them with R.

7.6 Categorical Variable Approach

The last approach that we will describe for analyzing moderating effects is the Categorical
Variable Approach. This approach has place when the moderator variable is a categorical
variable. For instance, if we have a categorical variable like Gender, we could apply this
approach. However, because we are dealing with a categorical variable, from a theoretical
point of view it is questionnable to say that Gender is a latent variable. But for practical
reasons we can treat them as latent constructs.

Again, it is better if we look at a simple example. Let’s say we have three reflective constructs:
an exogenous X, a moderator M (also exogenous), and an endogenous Y. Let’s suppose that
X and Y have two indicators, and that M has three categories. The idea is to use 3 —1 =2
categories of M as dummy variables to get product interaction terms. To estimate the
moderating effect, we need to create new latent interaction terms X M; and X M, whose
indicators will be the products of the indicators of X and M.

152

X1
exogenous X
X2
Y1
XMy
interaction XM, endogenous Y
XMy
Y2
= D>
XMy
interaction XM,
XMy

Figure 7.10: Diagram of a Moderating Categorical Latent Variable

7.6.1 Example

Let us assume that we have a categorical variable M with m categories. The first thing that
we need to do is to “decompose” M into m — 1 dummy variables. Remember that in R a
categorical variable is referred to as a factor and its categories are known as levels. Hence,
we need to pass from a single factor into m — 1 binary indicators.

Step 1

In this example we are going to create an artificial categorical variable (a factor) with three
categories. For that purpose we can use the function gl() that allows us to generate a
factor with n levels, k replications, and a total number of elements for a given length. So
let’s create a factor of length=250 with n=3 categories, each replicated approximately k=80
times:

create a categorical variable
categorical = gl(n = 3, k = 80, length = 250)

quick look at categorical
table(categorical)

categorical

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

153

1 2 3
90 80 80

As you can tell, the first category does not have 80 replications but 90. That is beacuse
80x3 = 240, so the left 10 replications will have the first category.

Step 2

We have the categorical variable but we need to get the dummy indicators. There are going
to be as many dummy variables as m-1 categories. For no major reason, we’ll take the third
category as a baseline, and we will create just dummy indicators for categories 1 and 2:

initialize dummy variables
dummyl = rep(0, 250)
dummy2 = rep(0, 250)

populate dummy variables
dummy1 [categorical == 1] = 1
dummy?2 [categorical == 2] = 1

Step 3

Once we have the dummy indicators we can create the product indicator terms. Here is how
we can have all the variables in a single data set:

selected indicators from satisfaction
satisfaction2 = satisfaction[, c(20:22, 24:26)]

add dummy variables to satisfaction2
satisfaction2$dummyl = dummyl
satisfaction2$dummy2 = dummy?2

add product terms to satisfaction2

satisfaction2$satiml = satisfaction2$satl * dummyl
satisfaction2$sat2ml = satisfaction2$sat2 * dummyl
satisfaction2$sat3ml = satisfaction2$sat3 * dummyl
satisfaction2$satim?2 = satisfaction2$satl * dummy2
satisfaction2$sat2m? = satisfaction2$sat2 * dummy2
satisfaction2$sat3m2 = satisfaction2$sat3 * dummy2

154

Step 4

After creating the data frame satisfaction2 with all the necessary variables, the last step
that we have to perform is the application of plspm() with bootstrap validation:

path matrix

cl =c(0, 0, 0, 0, 0, 0)
c2 = c(0, 0, 0, 0, 0, 0)
c3 = c(0, 0, 0, 0, 0, 0)
c4 = c(0, 0, 0, 0, 0, 0)
c6 =c¢c(0, 0, 0, 0, 0, 0)

c6 =c(1, 1, 1,1, 1, 0)
cat_path = rbind(cl, c2, c3, c4, cb, c6)
rownames (cat_path) = c(, , , ,))

blocks of outer model
cat_blocks = 1list(1:3, 7, 9:11, 8, 12:14, 4:6)

vector of modes
cat_modes = rep(, 6)

apply plspm with bootstrap validation
cat_pls = plspm(satisfaction2, cat_path, cat_blocks, modes = cat_modes,
boot.val = TRUE)

plot inner model
plot(cat_pls)

Finally, we can examine the bootstrap results that are contained in $boot$paths:

bootstrap results
round(cat_pls$boot$paths, 4)

#it Original Mean.Boot Std.Error perc.025 perc.975
Satis -> Loyalty 0.6378 0.5964 0.1011 0.4187 0.7911
M1 -> Loyalty -0.0196 -0.2575 0.2583 -0.6865 0.2370
SatisM1l -> Loyalty 0.0030 0.2290 0.2513 -0.2954 0.6671
M2 -> Loyalty 0.0363 -0.0387 0.2633 -0.5181 0.4675

SatisM2 -> Loyalty 0.1179 0.1864 0.2360 -0.2614 0.6168

As we can see from the bootstrap confidence intervals, the only coefficient with a confidence
interval that does not include the zero is the one associated with Satis and Loyalty. Now,
keep in mind that is an artificial example with a simulated categorical variable, and that
we are just focusing on the inner model. In a real application, you should assess both the

155

Satis

0.6378

M1 ~0.01% Loyalty
0.1179
0.003

0.0362

SatisM1 SatisM2
M2

Figure 7.11: Inner model with path coefficients

measurement, and the structural model, making a full diagnose of the quality of the results,
and perhaps even trying a multi-group comparison approach.

7.7 Reading List

e A partial least squares latent variable modeling approach for measuring interac-
tion effects. Results from a monte carlo simulation study and voice mail Emo-
tion/Adoption study by Wynne Chin, Barbara Marcolin, and Peter Newsted (1996)
Paper presented at the Seventeenth International Conference on Information Systems
(In J.I. DeGross, S. Jarvenpaa, A. Srinivasan, pp: 21 - 41. Cleveland, OH), where the
authors present the Product Indicator Approach as well as a Monte Carlo Simulation
study to test the efficacy of PLS-PM for detecting and estimating interaction effects.

e A partial least squares latent variable modeling approach for measuring interaction
effects: results from a monte carlo simulation study and an electronic-mail emo-
tion/adoption study by Wynne Chin, Barbara Marcolin, and Peter Newsted (2003).
This paper, published in Information Systems Research (14-2: 189-217), is a derived
publication from the previous reference.

e Testing Moderating Effects in PLS Path Models: An lllustration of Available
Procedures by Jorg Henseler and Georg Fassot (2010). As Chapter 30 of the Handbook
of Partial Least Squares (pp: 713-735), this article covers in great detail the main
approaches that can be used for testing moderating effects in PLS Path Modeling.

156

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

Chapter 8

PLS Path Models with Higher-Order
Constructs

In this chapter we will talk about PLS Path Modeling applied to a particular type of models:
the Higher-Order Construct Models also known as Hierarchical Models. As their
name says, what makes these models so special is that they contain latent variables of “higher-
order”. A higher-order construct is the fancy term that some authors use to refer to a special
class of latent variables: constructs that involve more than one dimension. Other fancy names
for this type of constructs are higher-order factors, hierarchially structured latent variables,
or the term I coined constructified constructs.

Second Order First Order
Construct Constructs
Verbal
ability
General Numerical
ability ability
Spatial
ability

Figure 8.1: Classical second-order construct: General Intelligence ability

The conceptual idea behind these latent variables is that they are supposed to be at a higher
level of abstraction. We know that latent variables represent abstract or theoretical con-

157

158

cepts, but sometimes we need extra constructs representing other latent variables. Hence my
oxymoronic term constructified constructs. The classical example of a higher-order construct
comes from the Psychometric literature with the special and general factor model for measur-
ing intelligence. Quite briefly, this model states that there is a General Intellegence Ability
that in turn comprises three special abilities: Verbal ability, Numerical ability and Spatial
ability. The General ability is the higher-order construct that is supposed to be reflected by
the lower-order abilities (see the figure above).

8.1 Constructify-it: How to model higher-order
constructs?

Graphically, a higher-order construct is typically represented as a latent variable that has no
indicators, like in the following diagram. LV is the higher-order construct in this case while
LVy, LV3 and LV, are the lower-order constructs.

first order
MVaoy constructs

mvso

second order
Mvaz; construct

mvso

MvVgaq

Mmvy,

Figure 8.2: Hierarchical model with a second order latent variable

As you can tell, the second order construct LV; has no manifest variables connected to it
—this is how you would draw higher-order constructs in path diagrams. I should say that this
diagram is an abstract representation for illustration purposes. The convention to represent
latent variables of higher-order with no indicators is not something that you have to convert
into martix format for plspm().

159

8.1.1 Two types of higher-order constructs

We can distinguish two types of higher-order (multidimensional) constructs based on the
direction of the relationship between the lower and higher order latent variables. You can

find these two general types under the fancy terms of molecular and molar models.

e The molecular view states that lower-order latent variables are conceived as a response
to the higher-order construct, that is, the higher-order construct can be decomposed
into “atomistic parts or molecules”.

e In contrast, the molar view says that a higher-order construct is viewed as composed

of lower-order latent variables.

The two types of paradigms are represented in the following diagram:

Molecular Model

LV,
1st order

second order

LVs
1st order

LV,
1st order

Molar Model

second order

LV,
1st order

LV3
1st order

LV,
1st order

Figure 8.3: Two types of higher-order constructs: molecular and molar

Simply put, a “constructified” or higher-order construct is a latent variable that reflects or
is reflected by other latent variables. A good way to think about higher-order variables is
as multidimensional constructs. As such, they can be distinguished from unidimensional
constructs, which are characterized by a single underlying dimension. Usually, the discussion
and application of higher-order constructs is often limited to a second-order hierarchical

structure, but you can find third, fourth or higer-order latent variables.

160

8.1.2 Modeling higher-order constructs in PLS-PM

In PLS Path Modeling we know that all latent variables must have at least one indicator
for a model to be estimated. Models with latent variables of higher-order, the way they are
customarily represented (with no manifest variables), are not allowed in the PLS-PM frame-
work: an LV with no indicators has no place in PLS-PM. The way that path diagrams are
considered in PLS is by having a block of indicators attached to the second order construct.
So how do we fix this problem? There are three approaches that we can use to get the job
done when working with hierarchical models:

e Repeated Indicators Approach (poor man’s approach)
e Two-Step Approach (patch approach)

e Hybrid Approach (give away approach)

Repeated Indicators Approach The Repeated Indicators Approach is the most popular
approach when estimating higher order constructs in PLS-PM. Also known by the nicknames
hierarchical component model or superblock approach it was originally proposed by Herman
Wold in the early 1980s. Since then it has become the standard way in PLS to model higher-
order constructs. The procedure is very simple and consists of taking the indicators of the
lower-order constructs and using them as the manifest variables of the higher-order latent
variable. You can think of this approach as the “poor man’s solution” for when we need to
get indicators for the higher-order construct. Don’t get me wrong. “Poor man’s” does not
mean improvised. What I'm saying is that -whether you want it or not- your higher-order
constructs need indicators so that they can be estimated by PLS. The easiest and simplest
solution is to use the manifest variables of the lower-order constructs. The “toll” to pay when
using this approach is that all indicators of the lower-order and the higher-order factors must
be treated in reflective way.

Two-Step Approach Another way of building a higher-order model is the Two-Step Ap-
proach which I prefer to call the patch approach. The process behind this solution is a little
bit tangled. In the first step we compute latent variable scores of the lower-order constructs
without running a PLS-PM analysis. Then, in the second step, we run a PLS-PM analysis
using the computed scores as indicators of the higher-order constructs. As you can imagine,
the dodgy part is in the first step: how does one compute scores for the latent variables of
lower-order? The answer: use a “patchy” solution like principal components analysis (PCA)
or factor analysis. We can get a score for a first-order construct by taking the first principal
component of its indicators. Then PCA scores of lower-order constructs are subsequently
used as indicators for the higher-order construct in a separate PLS path model.

161

Hybrid Approach The third option for modeling hierarchical constructs is the Hybrid
Approach. The idea behind this approach is to randomly split the manifest variables of the
lower-order constructs so that half are assigned to their respective construct and the other
half are assigned to the higher-order construct. I prefer to call this option the “give away
approach” because some of the lower-order indicators are given away to measure the higher-
order construct. The word hybrid is simply used to indicate a compromise: in order to avoid
having repeated indicators in the higher-order latent variables, we agree to use less indicators
in the lower-order constructs.

8.1.3 Case Study: NFL data

The case study for this chapter is based on statistics of (American) football teams playing
in the National Football League (NFL). To be more precise the data is from the 2010-2011
season and contains different variables regarding the offensive performance of each team.

Before jumping into the structural model and the underlying theory, I need to make sure
we are all on the same page. First, American football, known in the United States simply
as football, is not what most people in the world think of when reading the word football
(soccer). American football, is played between two teams of eleven players with the objective
of scoring points by advancing the ball into the opposing team’s end zone. There are two
ways to advance the ball: either by running with it (attack by land) or throwing it to a
teammate (attack by air). Running with the ball is also known as rushing; throwing the
ball to a teammate is also known as passing. There are a number of different ways to score
points, but let’s stick with the main ones:

e by carrying the ball over the opponent’s goal line (this is a touchdown: 6 points)
e by catching a pass thrown over the opponent’s goal line (this is a touchdown: 6 points)

e by kicking the ball through the opponent’s goal posts after a touchdown (this is an
extra point: 1 point)

e by kicking the ball through the opponent’s goal posts but not after a touchdown (this
is a field goal: 3 points)

Team Units FEach team has 11 players on the field at a time; however, the total number
of players in a team is 46. With so many players, each has a very specialized role and players
are divided into three separate units: the offense, the defense and the special teams.

When a team takes possession of the ball the offense is responsible of the attack. Conversely,
the team that does not have possesion of the ball uses it defense to contain the opponent’s
attack. The offense has four attempts, called downs, in which to advance the ball at least 10
yards toward their opponent’s (the defense’s) end zone. When the offense succeeds in gaining

162

at least 10 yards, it gets a first down, meaning the team starts a new set of four downs to
gain yet another 10 yards or to score. If the offense fails to gain a first down (10 yards) after
four downs, the other team gets possession of the ball at the point where the fourth down
ended, beginning with their first down to advance the ball in the opposite direction.

Offense Strategy FEach team has a playbook of hundreds of plays for their different units.
Ideally, each play is a scripted endeavor specifying the task to be performed by each player.
The offense strategy is divided into rushing and passing plays. Some plays are very effective
but conservative; they are likely to get only a few yards. Other plays are more risky but with
the potential for long gains. Generally speaking, rushing plays are less risky than passing
plays. However, there are relatively safe passing plays and risky running plays.

Offense Performance Our case study will be focused on analyzing the Overall Scoring of
the teams in terms of the Offense Performance and the Special Teams. To do that we are
going to consider both the Rushing and the Passing components of the Offense’s teams. To
make things more interesting and relevant for our hierarchical modeling purposes, we will
take into account the offense performanace as a second-order construct.

Figure 8.4: Offense Performance as a second-order construct

Offense Data

The data comes in the plspm package under the name offense; this is how you can load it:

163

load plspm
library(plspm)

load offense dataset
data(offense)

let's take a peek

head (offense)

YardsRushAtt RushYards RushFirstDown YardsPassComp

Arizona 4.2 101.6 5.2 11.6

Atlanta 4.0 111.6 6.1 11.2

Baltimore 4.2 122.2 5.9 11.0

Buffalo 4.9 120.1 6.2 10.4

Carolina 5.4 150.5 8.7 12.3

Chicago 4.4 125.9 6.1 11.2

PassYards PassFirstDown FieldGoals OtherTDs PointsGame
Arizona 222.9 10.9 1.2 0.2 19.5
Atlanta 257.4 13.2 1.6 0.2 23.8
Baltimore 213.6 11.3 1.9 0.3 23.2
Buffalo 231.6 11.2 1.4 0.4 23.2
Carolina 239.1 10.9 1.4 0.1 25.4
Chicago 188.2 9.6 1.8 0.6 22.1
#i# OffensTD TDGame PassTDG RushTDG PlaysGame YardsPlay

Arizona 2.1 2.3 1.3 0.8 62.1 5.2

Atlanta 2.5 2.7 1.7 0.8 66.9 5.5

Baltimore 2.2 2.5 1.4 0.8 64.9 5.2

Buffalo 2.2 2.7 1.5 0.8 62.0 5.7

Carolina 2.9 3.0 1.3 1.6 62.5 6.2

Chicago 1.8 2.4 1.1 0.6 61.1 5.1

Hit FirstDownPlay OffTimePossPerc

Arizona 0.29 0.4651

Atlanta 0.32 0.5294

Baltimore 0.29 0.5132

Buffalo 0.32 0.5030

Carolina 0.35 0.5043

Chicago 0.28 0.5047

There are 17 variables in the data that involve the fowllowing blocks:

Rushing Block The first three variables define the Rushing block

1 YardsRushAtt: Yards per Rush Attempt

164

2 RushYards: Rush Yards per game

3 RushFirstDown: Rush First Downs per game

Passing Block The following three columns in the data (from 4 to 6) have to do with the
Passing construct

4 YardsPassComp: Yards Pass Completion
5 PassYards: Passed Yards per game

6 PassFirstDown: Pass First Downs per game

Spec Block Columns 7 and 8 are the indicators of the Special Teams that account for the
points accomplished by other units rather than the Offense

7 FieldGoals: Field Goals per game

8 OtherTDs: Other Touchdowns (non-offense) per game

Scoring Block The following three columns in the data (from 9 to 11) involve the Scoring
construct

9 PointsGame: Points per game
10 0ffensTD: Offense Touchdowns per game
11 TDGame: Touchdowns per game

The rest of the variables (columns 12 to 17) are additional variables that are included in the
data “just in case” you are interested to play with.

8.2 Repeated Indicators: The Poor Man’s Approach

The first approach we will apply is the popular repeated indicators approach. As we
previously mentioned, this procedure consists of measuring a higher-order construct with the
indicators of the lower-order constructs that are associated with it. An important prerequisite
for this poor man’s solution is that all the manifest variables of the lower-order and the higher-
order constructs should be treated in a reflective way. It should be noted that this approach
is not foolproof. One of its disadvantages is the potential effect for biasing the parameter
estimates. This possible bias arises from relating variables of the same type together via the
PLS-PM algorithm. Why? Because the indicators in the exogeneous variables become the
indicators of the endogenous variables.

165

8.2.1 Repeated Indicators example

In our model we have Offense Performance as a second-order construct that is supposed to
reflect both the Rushing Quality and the Passing Quality. The way to model Offense
Performance is by measuring it with the indicators of Rushing Quality and Passing
Quality:

Offense Block Columns 1 to 6 will be the repeated indicators that we’ll use to measure
the Offense block

1 YardsRushAtt: Yards per Rush Attempt

2 RushYards: Rush Yards per game

3 RushFirstDown: Rush First Downs per game
4 YardsPassComp: Yards Pass Completion

5 PassYards: Passed Yards per game

6 PassFirstDown: Pass First Downs per game

Applying plspm()

As usual, we start by defining the inner model in matrix format and the outer model with the
list of indicators and the vector of modes. In this example the latent variable of the Special
teams will be treated in a formative way because of the nature of its manifest variables.

path matrix

nl = c(0, 0, 0, 0, 0)
n2 = c(0, 0, 0, 0, 0)
n3 = c(0, 0, 0, 0, 0)

n4 = c(0, 1, 1, 0, 0)
n5 = c(1, 0, 0, 1, 0)
nfl_path = rbind(nl, n2, n3, n4, nb)

adding row and column names
rownames (nfl_path) = c(, 5)))

colnames(nfl_path) = rownames(nfl_path)

list of blocks
nfl_blocks = 1ist(7:8, 1:3, 4:6, 1:6, 9:11)

vector modes

166

nfl_modes = c(, , : s)

apply plspm
nfl_plsl = plspm(offense, nfl_path, nfl_blocks, modes = nfl_modes)

Notice how the list nfl blocks is defined. The first element in the list refers to the Special
teams and is associated with the column indices 7:8. The next element has to do with the
Rushing indicators which is associated with the column indices 1:3. The Passing construct
is associated with the indices 4:6. Then we repeat the column indices 1:6 to form the block
of indicators of Offense. Finally, the last element represents the Scoring construct that is
formed by column indices 9:11.

Let’s visualize the path coefficients with plot():

plot path coeffs
plot(nfl_plsl)

Special
4, 0-3086
Rushing Scoring
0.5707
~ 10.7894
Passing '-0 =S85 Offense

Figure 8.5: Inner model results of Repeated Indicators Approach

The sign of the path coeflients look fine. Scoring is positively influenced by the Special
teams performance as well as by the 0ffense performance. As you can tell, the Offense’s
path coefficient reflects the higher contribution to the Scoring capacity (which is what you
would expect of any team’s offense, that’s their job). Regarding the Rushing and Passing
qualities, they both have a positive impact on the 0ffense performance although a Passing
quality is much more important for an effective attack.

167

8.3 Two-Step Option: The Patch Approach

The second option for modeling a higher-order construct is the two-step approach. The
first step involves computing scores for the lower-order constructs; the second step the lower-
order latent scores are subsequently used as indicators of the higher-order construct in a PLS
path model. This approach is not as elegant as the repeated indicators approach because
the modeling process is not done in a single PLS-PM run but requires performing separate
analysis, this is why I dub it the “patch approach”. Nevertheless, the two-step approach may
offer advantages when estimating higher-order constructs with formative indicators. However,
the drawback comes within the two-step conception because the higher-order constructs
analyzed in the second step are not taken into account when computing the scores at the
first step (which is like reaping what we just sowed).

8.3.1 Two-Step example

So how do we apply the two-step approach with our Offense Performance model? Well, first
we need to compute scores for the latent variables of first order: Rushing and Passing. One
option is to get the scores by applying a Principal Component Analysis (PCA). For this
purpose we can use the function nipals () of the package plsdepot. If you haven’t installed
plsdepot remember to do so first with the function install.packages():

installing plsdepot
install.packages()

load nipals
library(plsdepot)

Step 1

We begin by performing a PCA on the indicators of the Rushing block. To see what’s
contained in the results, simply type the name of the object (rush_pca)

PCA of Rushing block
rush_pca = nipals(offense[, 1:3])

print rush_pca
rush_pca

##
NIPALS algorithm
-

168

$values eigenvalues

$scores scores (T-components)
$loadings loadings

$cor.xt X,T correlations

$disto distance to origin

$contrib contribution of rows
$cos squared cosinus

$dmod distance to the model
-

There a lot of interesting results returned by nipals() but right now we just care about the
principal components that are contained in $scores. Actually, we only need to select the
first score (first column):

get first component
rushl = rush_pca$scores[, 1]

We’ll do exactly the same thing for the variables in the Passing block: apply nipals() and
select the first component:

PCA of Passing block
pass_pca = nipals(offense[, 4:6])

first component
passl = pass_pca$scores[, 1]

At this point we should have the principal components stored in rushl and passi. Let’s
take a quick look at the first values in the obtained components:

what do rushl and passl look like?
head(cbind(rushl, passl))

#it rushl passl
Arizona -1.00953 -0.08224
Atlanta -0.49682 0.75109
Baltimore -0.01444 -0.40361
Buffalo 0.95809 -0.50067
Carolina 3.80063 0.48156
Chicago 0.45506 -1.06670

169

Step 2

The rushl and pass1 components will be used in the second step of the patchy approach as
the indicators for Offense. What we have to do now is to prepare the required dataset for
plspm(). We cannot simply use the data offense because it does not contain rushl and
passl. One solution is creating a new data frame, say off_twostep with all the necessary
indicators, like so:

dataset for two-step approach
off_twostep = cbind(offense[, c(7:8, 1:6)], rushl, passl, offensel[, 9:11])

Once we created the dataset with all the indicators, we have to prepare the extra ncessary
ingredients of plspm(). There is no need to change the inner matrix and the vector of modes
previously defined. The only thing that we must redefine is the outer list because we have a
new data frame with different column indices:

list of blocks
nfl_blocks2 = 1list(1:2, 3:5, 6:8, 9:10, 11:13)

apply plspm
nfl_pls2 = plspm(off_twostep, nfl_path, nfl_blocks2, modes = nfl_modes)
Let’s plot the inner model to check the path coefficients

plot path coeffs
plot(nfl_pls2)

Special
&0.311
Rushing Scoring
0.5348
-~ A 0.8007
Passing b—o =593 Offense

Figure 8.6: Inner model results of Two-Step Approach

170

Not bad eh? Similar to the results obtained from the repeated indicators approach, Scoring
is positively influenced by the Special teams performance and by the 0ffense performance.
Once again, we observe the higher contribution that a team’s offense has on the Scoring
capacity. Also, the Rushing and Passing qualities have a postive impact on the Offense
performance, with Passing having a higher importance.

Some traps to be aware of

Before discussing our last approach for modeling higher-order constructs, let me show you
a slightly different way to apply the two-step approach. In this example, instead of using
the function nipals() to calculate the Principal Components, I'm going to use the function
prcomp() that comes by default in R:

PCA of Rushing block

rush_prcomp = prcomp(offense[, 1:3], scale. = TRUE)
select fisrt component

rush_pcl = rush_prcomp$x[, 1]

PCA of Passing block

pass_prcomp = prcomp(offense[, 4:6], scale. = TRUE)

select fisrt component
pass_pcl = pass_prcomp$x[, 1]

If we compare the nipals() components (rushl and passl) against the prcomp() compo-
nents (rush_pcl and pass_pcl) we get the following:

compare nipals components versus prcomp components
head(cbind(rushl, passl, rush_pcl, pass_pcl))

#it rushl passl rush_pcl pass_pcl
Arizona -1.00953 -0.08224 -1.00955 0.08235
Atlanta -0.49682 0.75109 -0.49680 -0.75117
Baltimore -0.01444 -0.40361 -0.01443 0.40361
Buffalo 0.95809 -0.50067 0.95805 0.50056
Carolina 3.80063 0.48156 3.80061 -0.48135
Chicago 0.45506 -1.06670 0.45506 1.06683

The scores are almost identical except that passl has a different sign than pass_pcl. This
is totally allright and initially there shouldn’t be anything to worry about. In fact, it might
be that when you replicate the analysis with your computer you get a different sign.

171

But what about the PLS-PM analysis? Do the alternative scores affect the results? Let’s
figure it out. Again, we will define another data frame (other_twostep) with the new latent
variable scores:

another dataset for two-step approach
other_twostep = cbind(offense[,c(7:8, 1:6)], rush_pcl, pass_pcl,
offense[,9:11])

apply plspm
other_pls2 = plspm(other_twostep, nfl_path, nfl_blocks2, modes = nfl_modes)

Ok, plspm() did its job. Now let’s plot the path coefficients

plot path coeffs
plot(other_pls2)

Special
&0'3012
Rushing Scoring
o 0.3455 4
"~ 7 —0.682
Passing 5959 Offense

Figure 8.7: Inner model results of Two-Step Approach

Now everything looks different and like nonsensical. By changing the sign of one indicator
we are getting some weird path coefficients. This is something that you should care about;
that’s why I wanted to show you a potential pitfall that might drive you nuts if you don’t
know what to expect. If you ever find yourself in a situation like this one, I suggest you to
try different methods for computing the principal components because you can get different
solutions as we’ve just seen.

172

8.4 Hybrid Option: The Give Away Approach

The third approach we will discuss is the hybrid or “give away” approach. Basically, this
option attempts to solve the issue of having repeated manifest variables when using the
Repeated Indicators approach. The implementation of this method within PLS involves
randomly splitting the indicators of the lower-order constructs so that half are assigned to
their respective latent variables and the other half are assigned to the higher-order constructs.
Proceeding in this way (giving away indicators of the lower-order constructs) we avoid having
repeated items.

Simply put, under the give away approch we are willing to “sacrifice” some of the indicators
in the lower-order constructs to use them as indicators of the higher-order construct. Ideally,
we would randomly split the manifest variables in Rushing and Passing so that half of
them go to 0Offense. But we only have three indicators for Rushing and three indicators for
Passing. So we will give away one indicator in each block and use them as manifest variables
for Offense. For instance, we may take RushYards (column 2) and PassYards (column 5)
and assigned them to Offense.

8.4.1 Hybrid Approach example

Continuing with the Offense Performance model, the application of the give-away approach
is pretty straightforward. Again, of the four main ingredients for plspm() we only need to
define the list of blocks that indicates the columns in the dataset offense to form the blocks
of indicators.

redefine list of blocks
nfl_blocks3 = 1ist(7:8, c(1, 3), c(4, 6), c(2, 5), 9:11)

apply plspm
nfl_pls3 = plspm(offense, nfl_path, nfl_blocks3, modes = nfl_modes)

Did you check the definition of the outer list nfl blocks3? The first element associated
with Special hasn’t changed. However, Rushing is being measured with columns 1 and 3;
Passing is measured by indicators 4 and 6; and 0ffense is measured with columns 2 and 5.

If we plot the path coefficients we’ll see that we are not getting the same results of the previous
approaches but the path coefficients are not that different. Perhaps the most noticeable
change is in the path coefficient between Rushing and Offense with a value of 0.3614; this
value seems to be clearly lower than what we got with the repeated indicators and the
two-step solutions.

173

plot path coeffs
plot (nfl_pls3)

Special
&0.2997
Rushing Scoring
0.3614
"~ 40.8496
Passing B—O 8558 Offense

Figure 8.8: Inner model results of Hybrid Approach

8.5 Wrapping Up

It is interesting to compare the results obtained from the three discussed approaches. As we
know, there are many things in a PLS path model that can be compared but I’'m only going
to focus on the path coefficients. One option is to extract them from the table of $effects.
For instance, nfl plsi$effects looks like this:

effects of nfl_plsl
nfl_plsi$effects

#it relationships direct indirect total
1 Special -> Rushing 0.0000 0.0000 0.0000
2 Special -> Passing 0.0000 0.0000 0.0000
3 Special -> Offense 0.0000 0.0000 0.0000
4 Special -> Scoring 0.3086 0.0000 0.3086
5 Rushing -> Passing 0.0000 0.0000 0.0000
6 Rushing -> Offense 0.5707 0.0000 0.5707
7 Rushing -> Scoring 0.0000 0.4505 0.4505
8 Passing -> Offense 0.7588 0.0000 0.7588

174

9 Passing —-> Scoring 0.0000 0.5989 0.5989
10 Offense -> Scoring 0.7894 0.0000 0.7894

We want only the direct effects ($effects$direct) but we don’t want the entire column,
just the coefficients that are active, that is, rows 4, 6, 8 and 10. So let’s create a vector aux
with the desired indices and then store the extracted path coefficients in a matrix n1f_paths:

useful row indices of effects
aux = c(4, 6, 8, 10)

select desired path coefficients of each approach
pathsl = nfl_plsi$effects[aux, 2]
paths2 = nfl_pls2$effects[aux, 2]
paths3 = nfl_pls3$effects[aux, 2]

put them in a matrix
nfl_paths = cbind(pathsl, paths2, paths3)
rownames (nfl_paths) = nfl_plsi$effects[aux, 1]

inspect nfl_paths
nfl_paths

#it pathsl paths2 paths3
Special -> Scoring 0.3086 0.3110 0.2997
Rushing -> Offense 0.5707 0.5348 0.3614
Passing —> Offense 0.7588 0.7893 0.8258
Offense -> Scoring 0.7894 0.8097 0.8496

Finally, let’s do a quick visual comparison with a barplot

barplot

barplot (t(nfl_paths), beside=TRUE, border=NA, ylim=c(0,1), axes=FALSE,
legend
legend.text = c(s s),
args.legend=list (x= , title= , bty="n", ncol=3))

add y-axis
axis(side = 2, las = 2)

I know this is only a rough comparison but the barplot helps us to see that at least with our
Offense Performance model, the three approaches provide very similar path coefficients. Ex-
cept for the cofficient of Rushing on Offense, the rest of the three coefficients look practically
the same.

175

1.0 4

0.4 —

0.2

0.0 -

8.6

Approach
B Repeat O 2-step O hybrid

Special —> Scoring Rushing —> Offense Passing —> Offense Offense —> Scoring

Figure 8.9: Barplot of path coefficients from the three approaches
Reading List

PLS Path modelling and multiple table analysis. Application to the cosmetic
habits of women in lle-de-France by Christiane Guinot, Julie Latreille, and Michel
Tenenhaus (2001). This paper in Chemometrics and Intelligent Laboratory Systems 58:
247-259, presents an interesting application of PLS-PM on Multiple Table Analysis.
By using a hierarchical second-order factor model, the authors aim at obtaining a global
score describing the use of cosmetic products by French women.

Latent Variable Path Modeling with Partial Least Squares by Jan-Bernd Lohmoller
(1989). This is the classic reference for the Repeated Indicators approach. The Section
3.5 Split Principal Components of Lohmoller’s book is dedicated to describe several
multi-block PLS models among which you can find the Hierarchical Component
Model (a.k.a. repeated indicator approach). Not the first source to consult for novice
PLS readers, but still an obliged one if you are doing serious research on PLS-PM.

Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines
and Empirical lllustration by Martin Wetzels, Gaby Odekerken-Schroder, and Claudia
van Oppen. This paper published in MIS Quarterly Vol. 33(1): 177-195, presents a
thorough discussion for how to assess hierarchical models within PLS-PM.

Modeling Reflective Higher-Order Constructs using Three Approaches with PLS

176

Path Modeling: A Monte Carlo Comparison (2007) by Bradley Wilson and Jorg
Henseler. This short paper presented at the Australian and New Zealand Marketing
Academy Conference gives a nice summary of the approaches used in PLS-PM for mod-
eling higher-order constructs and provides suggestions of when to use each approach.

Chapter 9

Detecting Classes with REBUS-PLS

Many datasets are far from being a homogenous mass of data. Diversity is the rule. More
often than not, you will find subsets of observations with a particular behavior; perhaps there
is a subset that shows different patterns in the distribution of the variables, or maybe there
are observations that could be grouped together and analyzed separately. It might well be
the case that one single model is not be the best model for your entire dataset, and you might
need to estimate different PLS path models for different groups of observations.

In Chapter 6 we talked about comparing groups in PLS Path Modeling by taking into account
available information from different groups in data. One of the traditional examples is when
we have demographic information like gender and we apply a group analysis between females
and males. But what about those situations when we don’t have categorical variables to play
with for multi-group comparisons? In these circumstances we could still apply a PLS-PM
analysis but we probably will be wondering “What if there’s something else? What if there’s
something hidden in the data? What if there’s more juice to be extracted from our data?” In
this chapter we will describe one of the available methods to deal with this type of analysis:
the REBUS approach for detecting classes in PLS Path Modeling.

9.1 Diversity in Data

When we estimate PLS path models, we do it under the implicit assumption that all the
observations in the data are more or less homogeneous. This implies that we treat all obser-
vations alike without considering any group structure, and we take for granted that a single
model will adequately represent all the individuals. Consequently, we are supposing that the
same set of parameter values applies to all observations. The problem, however, is that this
assumption may not be realistic in all cases; and it is reasonable to expect diversity in our
data. This “diversity” in data receives the special name of heterogeneity.

177

178

Consider, for example, marketing research studies using Customer Sastisfaction Index (CSI)
models. Potential sources of heterogeneity in data can be due to customer preferences, brand
awareness, or service usage rate, for example. Some customers’ satisfaction may be more
driven because of higher expectations, while other customers may be more satisfied because
of the perceived value.

So, what happens if we don’t take into account the so-called heterogeneity? Well, the problem
of not considering the possible existence of classes in the observations is that conventional
structural equation modeling techniques may lead us to obtain inadequate results. Since the
model for the entire data may be mispecified, we run the risk of drawing poor conclusions.
Thus, to overcome this situation it is necessary to assume heterogeneity with groups having
different behavior. This implies that more than one single set of parameter estimates is
needed to adequately characterize the analyzed model.

9.1.1 Unobserved Classes

People say that heterogeneity can be observed or unobserved. When we have information
characterizing groups in data like gender, ethnic group or income level, we talk about ob-
served heterogeneity. In contrast, when we don’t have such variables or any other infor-
mation about the causes of diversity we talk about unobserved heterogeneity. This may
sound a little complicated but is just a term to say that we don’t have the slightest idea of
what the heck is causing diversity in our data.

Basically, unobserved heterogeneity implies that we have no clue whatsoever about the possi-
ble number of classes in which the observations can be grouped. Therefore, we cannot divide
a priori the observations into groups. Although we are supposing that the data consists of
different classes, we don’t know beforehand which observations belong to which of the classes.
Fortunately, within the PLS-PM world we have a number of options to handle unobserved
heterogeneity by applying traditional clustering techniques, latent class analysis, and mixture
models. The main idea behind these methods is to infer class memberships of observations
by using some type of clustering-based procedure.

A naive approach

Perhaps the most naive and simplest approach to tackle unobserved heterogeneity consists
of a sequential two-step procedure; one in which we combine cluster analysis in the first
step with a multi-group analysis in the second step. First, we form groups by performing
typical clustering analysis on the data (on the manifest variables or on the latent variables).
Then, we perform a multi-group analysis on the separate models for each cluster. However,
this approach has been criticized by many people because the resulting groups may not

179

produce differentiated path models, and because this approach does not take into account
the hypothesized structural relationships among variables.

To overcome the shortcomings of the two-step procedure, some authors have developed a vari-
ety of proposals using a model-based focus approach. Generally speaking, model-based tech-
niques involve some clustering-based procedure that takes into consideration the cause-effect
structure of path models. In PLS-PM, the most known approaches for detecting unobserved
classes are FIMIX-PLS by Hahn, Johnson, Herrmann and Huber; and REBUS-PLS by
Vincenzo Esposito Vinzi and Laura Trinchera. We are not going to discuss FIMIX but you
can check more references about it in the reading list section at the end of the chapter. The
following sections are entirely dedicated to REBUS.

9.2 What is REBUS?

REBUS is the acronym for Response Based Unit Segmentation in PLS-PM, and it is
an approach based on an algorithm designed to “discover” latent classes inside a PLS-PM
global model. If you have the chance to check the references about REBUS, you will see that
is said to be a response-based clustering technique. What does this mean? This means that
it is a technique inspired by cluster analysis techniques, and it applies clustering principles
to obtain the solution. But don’t get confused. REBUS is not equivalent to cluster analysis.
Although you could apply your favorite type of clsuter analysis method to detect classes in
your data, this is not what we are talking about. We are talking about going beyond simple
clustering techniques. Why? Because no cluster analysis method will take into account the
structural (cause-effect) relationship of a PLS path model.

9.2.1 The REBUS Approach

With REBUS, we seek to optimize the predictive capacity of the model in each detected class
without requiring distributional assumptions about the latent or manifest variables. In order
to form the classes, REBUS assigns observations to groups based on a unit-model distance.
The procedure starts with calculating the global PLS model (for all observations). Next,
according to the obtained results from a hierarchical clustering based on the unit-model
distance, preliminary classes are defined. Then, local models are estimated for each class
and a measure of the distance between each observation and each local model is computed.
Observations are then re-assigned to the class corresponding to the closest local model. An
iterative algorithm re-estimates local models until no change in the composition of the classes
is observed.

The first key component behind REBUS is the use of a measure to calculate the distance
of an observation to a given model. The proposed distance is actually a pseudo distance

180

or closeness measure that is based on the Goodness of Fit index “GoF” (see chapter 4).
Remember that the GoF index can be seen as a compromise between the quality of the
measurement model and the quality of the structural model:

GoF? = (AverageCommunality)z(Average R?)

Although I could show you the formula of the closeness measure used in REBUS, I prefer
not to do so because of its complexity (which is beyond the scope of the book). Instead,
I will describe you the main idea. The important thing that you need to know is that
the distance measure behind REBUS is based on the GoF index. Consequently, we can
decompose the closeness measure in two elements: one element to assess the quality of the
measurement model, an another element to assess the quality of the structural model. The
element associated to the measurement model implies calculating communality residuals of
each observation to each class. Likewise, the element associated to the structural model
implies calculating structural residuals of each observation to each class. By combining the
two elements in a single measure we can assign observations to the class whose model fit is
the best. Broadly speaking, REBUS is designed to identify local models that have a better
fit than the global model by taking into account both the inner model and the outer model.

REBUS Algorithm (overall description)

1. Estimation of the global PLS Path Model

N

Computation of the communality and structural residuals of all observations from the
global model

Perform a hierarchical clustering on the residuals computed in step 2;
Choice the number of classes K according to the dendrogram obtained in step 3;
Assignment of the observations to each group according to the cluster analysis results;

Estimation of the K local models

N vk W

Computation of the closeness measure for each observation with respect to each local
model

8. Assignment of each observation to the closest local model,
Iterate steps 6 to 9 until reaching stability of class memberships

9. Description of the obtained classes according to differences among the local models
The REBUS algorithm begins with estimating the global model (on all the observations).

Then, a hierarchical clustering of both the communality and structural residuals is calculated
for the global model. This cluster analysis helps us to determine the number of classes and

181

the initial unit assignment to them. Then, the iterative steps take place in which observations
are assigned to the class corresponding with the closest local model according to the closeness
measure. The stopping criterion takes into account the stability of results in terms of class’
compositions. As a rule of thumb, we can use a threshold of less than 5% of units changing
class from one iteration to the next one as a stopping rule.

To assess the quality of the obtained partition, REBUS uses a Group Quality Index (GQI)
which is a reformulated GoF index intended for multi-group analysis. Actually, in the case
of having just one class, the GQI index is equal to the GoF index. In case of having more
than one class, when the local models perform better than the global model the GQI index
will be higher than the GoF index of the global model.

Key Ideas behind REBUS
e [t allows us to obtain units classification taking into account units performance for both
the structural and the measurement model.
e No distributional assumption is required on latent or observed variables.
e The chosen “distance” is defined according to the components of the GoF index.
e Only reflective blocks are allowed (no formative measurement).

On one hand, it is supposed that if two models show identical structural coefficients but differ-
ent outer weights, REBUS will be able to detect this difference. On the other, the identified
local models will exhibit higher values in the communalities and in the R? coefficients.

9.2.2 Case Study: Success Index Model

We will go back to the Success Index model of chapters 2 and 4 to show an application of
REBUS. As you will recall, the model is based on the premise that the Overall Succcess of
a team depends on the quality of the Attack as well as the quality of the Defense.

For this case study we will use football statistics of the season 2009-2010 from three European
national leagues: La Liga (Spain), the Premier League (England), and the Serie A (Italy).
The dataset comes with plspm under the name futbol:

only if you haven't load it
library(plspm)

load data futbol
data(futbol)

The following path diagram illustrates our proposed model:

182

Path Diagram with the Success Index model for REBUS

GSH

GSA
SSH

SSA

WMH
WMA
NGCH

NGCA
Defense
CSH

CSA

The description of each variable is given in the following table:

Table 9.1: Description of variables in data futbol
Variable Description

GSH total number of goals scored at home

GSA total number of goals scored away

SSH percentage of matches with scores goals at home
SSA percentage of matches with scores goals away

NGCH total number (negative) of goals conceded at home
NGCA total number (negative) of goals conceded away
CSH percentage of matches with no conceded goals at home
CSA percentage of matches with no conceded goals away
WMH total number of won matches at home

WMA total number of won matches away

Country country of the team’s league

Rank final ranking position within its league

9.2.3 Global PLS Path Model

Let us start by estimating the global PLS path model with all the observations. As usual,
we prepare the ingredients to cook our model (path matrix, list of blocks, vector of modes)
and then apply plspm():

183

rows of the path matrix
Attack = c(0, 0, 0)
Defense = c(0, 0, 0)
Success = c(1, 1, 0)

matrix created by row binding
fut_path = rbind(Attack, Defense, Success)

list of blocks
fut_blocks = list(1:4, 5:8, 9:10)

vector of modes (reflective)
fut_mods = rep(, 3)

apply plspm
fut_pls = plspm(futbol, fut_path, fut_blocks, modes = fut_mods)

plot the inner matrix
plot (fut_pls)

Attack

&0.6092

Defense Bb. 1307 Success

Figure 9.1: Visualizing the path coefficients of the inner model

After applying plspm(), we begin by checking the unidimensionality of the reflective blocks,
making sure we have adequate values for the Cronbach’s alpha, the Dillon-Goldstein’s rho
and the dominance of the first eigenvalue:

plot the inner matrix
fut_pls$unidim

184

#it
#Ht
#it
##

Mode MVs C.alpha DG.rho eig.lst eig.2nd
Attack A 4 0.8665 0.9096 2.865 0.7852
Defense A 4 0.8273 0.8855 2.638 0.9273
Success A 2 0.7930 0.9062 1.657 0.3429

For the sake of simplicity I will show just the loadings but your homework is to assess the
quality of the outer model in your computer following the guidelines of Chapter 4:

plotting loadings of the outer model
plot(fut_pls, what =

Attack
loadings

Attack

/&795 \0.8912

SSA GSH
, 0.906Y
0.784

SSH GSA

, arr.width = 0.1)

Defense Success

loadings loadings

Defense Success

0.8425
/6.8243 \
\NGCA CSH 0.9125
, 0.7602 l;.908 \
0.818
WMA WMH
NGCH CSA

Now, let us inspect the results of the inner model:

inner model resutls
fut_pls$inner_model

#it
#it
##
##
##
#it
#it
#Ht
##

$Success

Estimate Std. Error t value

Intercept -1.066e-16
Attack 6.092e-01
Defense 4.307e-01
Pr(>ltl)
Intercept 1.000e+00
Attack 1.994e-15
Defense 2.679e-10

0.04319 -2.467e-15
0.05635 1.081e+01
0.05635 7.645e+00

185

Cluster Analysis on Scores

Perhaps the simplest and quickest way to detect classes is by performing a standard cluster
analysis on the obtained scores of the latent variables. Keep in mind that this is a naive
approach that doesn’t take into account the structural relaitonships of the inner model. For
instance, we could apply a hierarchical clustering with the Ward method just by using the
function hclust () and selecting the parameter method = "ward".

hierarchical cluster analysis on the LV scores
fut_hclus = hclust(dist(fut_pls$scores), method =)

plot dendrogram

plot(fut_hclus, xlab = , sub = , cex = 0.8)
abline(h = 10, col = , lud = 4)

Cluster Dendrogram

25

20
|

15

Height
10

=1
=
=
=

o fy =} @ = « 2885 cTE® Ba= G) s08E o] =
CBOEche8c5Es 8RNy RE5 8020268502258 cEaNElpogasagrrcias
O5055520a=52cED 000088 GO0 ESSEnsS2>ga0Ec880a080®>30dEcgOsE 20m
SSXE38 I BE0 NS5 ey =88 RS e835E 8500885750 508 -SSR RGE
oL b 2 =

T 2 5PESS8 5Eo” 5S<RE8Y gE>Ixdy glff ="oo GgECS387 "5 28
S 2 8%5FE wS N =114 9= 5 < £ 0 n 275 5 L Qo

a 2z 2829 oL [(%) ° 5] £ 3 2 =g

S & £79 @ G € S S X Z IE

S 2x9on cQ ' c @ [Q o =

(] 2 ISP [2 = o« [}

o0 o S '2 0 m

Figure 9.2: Hierarchical Clustering Dendrogram

If we take a look at the dendrogram we may try to select four clusters (the ones obtained
by cutting the dendrogram with the red line). To obtain the observations in each cluster we
use the function cutree() and we specify its argument k = 4 to indicate that we want 4

186

clusters:

cut tree to obtain 4 clusters
clusters = cutree(fut_hclus, k = 4)

how many observations in each clsuter?
table(clusters)

clusters
##t 1 2 3 4
21 19 7 13

For convenience purposes we will put the scores and the cluster memberships in a data frame:

latent variable scores in data frame
fut_scores = as.data.frame(fut_pls$scores)

add clusters to data frame
fut_scores$Cluster = as.factor(clusters)

what does the data look like?
head(fut_scores, n = b5)

#i# Attack Defense Success Cluster
Almeria -0.2224 -0.38685 -0.7004 1
AthleticBilbao -0.1198 0.09269 0.1187 2
AtleticoMadrid 0.4412 -1.05614 -0.2428 2
Barcelona 2.5952 2.49727 2.8135 3
DeportivoCoruna -0.9392 0.42259 -0.1863 2

We know we have four clusters but we need to get some descriptive statistics like the average
values of the variables in each cluster (i.e. the centroids of each cluster). We can use the
ddply () function of package plyr (by Hadley Wickham) to quickly get the cluster centroids:

package plyr
library(plyr)

calculate cluster centroids

centroids = ddply(fut_scores, .(Cluster), summarise,
AvgAttack = mean(Attack), AvgDefense = mean(Defense),
AvgSuccess = mean(Success))

show centroids

187

centroids

Cluster AvgAttack AvgDefense AvgSuccess

1 1 -0.6878 -0.99542 -0.9030
2 2 -0.3454 0.04113 -0.2354
3 3 2.0334 1.56643 2.0872
4 4 0.5210 0.70441 0.6789

ddply () is a handy function that allows us to split a data frame and apply a specified function
in an easy way. In this case we are telling ddply() that we want to split the data frame
fut_scores by Cluster in order to get the mean values of Attack, Defense, and Success.

We can also use the package ggplot2 (also by Wickham) to get a nice graphic of the scores
with ggplot (), like the following one:

package ggplot2
library(ggplot2)

ggplot: Attack -vs- Success
ggplot(data = fut_scores,
aes(x = Attack, y = Success, label = rownames(fut_scores))) +
geom_text(size = 4, alpha = 0.8, aes(color = Cluster))

The figure above is just a scatter plot between Attack and Success. To add the names of
the teams we use the function geom_text () specifying the size of the text (size = 4), and
the transparency color (alpha = 0.8). Notice also that we are telling geom_text () to use
the clusters as an aesthetic color attribute: aes(color = Cluster).

What we get with the cluster analysis are groups of teams that are formed in such a way that
they reflect a performance effect. The cluster 3 (in turquoise) are the most successful teams
like Barcelona, Real Madrid, ManchesterUnited, Chelsea, Arsenal, Inter and Milan. If you
are familiar with the European football, the teams in cluster 3 are the ones that get to play
the Champions League. Then we have cluster 1 (in purple) formed by teams that are not the
best but still are in the top 5 places of their league’s ranking (these are the UEFA teams).
In color green we have the cluster 2 formed by teams in middle of the ranking table. And
finally we have the cluster 4 (in pink-red) that includes those teams with poor performance.

Although the hierarchical cluster analysis can be interesting and useful, its main drawback is
that it does not take into account the structural relationships of the model. The clustering
may helps us to reveal some information about the data, but it doesn’t tell us anything about
the model parameters of each group of observations. For that purpose we need to use better
approaches like REBUS.

188

3_
BAackid
2_
RuBTd
Cluster
g 17 i
O 2
S
(n 3
4
O_

Attack

Figure 9.3: Scatter plot: Attack -vs- Success
9.3 Applying REBUS

plspm provides a couple of functions that allow us to perform a REBUS analysis. The main
function is rebus.pls() which can be used as:

rebus.pls(pls, stop.crit = 0.005, iter.max = 100)

The first argument pls is an object of class "plspm". The second argument stop.crit
indicates the stop criterion for the iterative algorithm in REBUS. The default value means
that we are using a threshold of less than 0.05% of units changing class from one iteration
to the other as stopping rule. Don’t worry if this sounds complicated; 99% of the times you
can leave this parameter untouched unless you want to have a more relaxed threshold (e.g.
stop.crit = 0.10), or a more strict one (e.g. stop.crit = 0.001). The third argument
iter.max indicates the maximum number of iterations. The default value iter.max = 100
should be enough, but you can increase it if you needed to, although this could be evidence
that the detected classes may be unstable.

With that said, let us apply rebus.pls() on fut_pls with the default settings:

189

apply rebus
fut_rebus = rebus.pls(fut_pls)

When you run rebus.pls(), two things should happen: 1) a plot window should pop-up
showing a dendrogram, and 2) the following message should appear in your console:

[1] "Enter the number of classes (an integer > 1), and then press Enter:"
1:

As the message says, you should enter a digit greater than 1 and then press the key Enter.
This number will be the number of classes that REBUS will compute to get the preliminary
cluster partition.

The displayed dendrogram is just a visual aid so you can choose the number of classes to be
taken into account. Once you have decided how many clusters to choose, say three in this
case, you must enter the number 3 in your console and then press Enter.

REBUS
Dendrogram of Outer and Inner Residuals

15
l

10
l

Height

ﬁ%ﬁfﬁﬁ?ﬁ%ﬁg LanA ik

Hierarchical Clustering
Ward method

Figure 9.4: REBUS: Cluster Dendrogram of Outer and Inner residuals

190

The cluster analysis behind REBUS, that produces the dendrogram, is a hierarchical clus-
tering (with Ward method) applied on the residuals of both the outer and the inner model.
This clustering is the first step in the REBUS algorithm and the number of chosen classes
will create a preliminary partition of the observations. Then, in the iterative procedure, the
observations will be reassigned to the class’ model that best fits them.

What you get in fut_rebus is an object of class "rebus". When typing an object of this
class you get a display with the following results: the first section contains 1) the parameters
specification, 2) information of the found solutions, and 3) the composition of the found
segments. The second section denoted by $path.coef shows the values of the path coefficients
for each class. The third section denoted by $quality shows some measures about the quality
of the models in each class.

what's in fut_rebus?
fut_rebus

#i#
RESPONSE-BASED UNIT SEGMENTATION (REBUS)
IN PARTIAL LEAST SQUARES PATH MODELING

-
##

Parameters Specification

Number of segments: 3

Stop criterion: 0.005

Max number of iter: 100

##

REBUS solution (on standardized data)
Number of iterations: 12

Rate of unit change: 0

Group Quality Index: 0.8251

H##

REBUS Segments

Class.1 Class.?2 Class.3
number.units 18 22 20
proportions (%) 30 37 28
H##

R S e e e e S momeoe
$path.coef

H## Class.1 Class.?2 Class.3
Attack->Success 0.5194 0.6402 0.6881
Defense->Success 0.5731 0.5082 0.3654
##

B —m o

191

$loadings

H## Class.1 Class.?2 Class.3

GSH 0.8806 0.8953 0.9167

GSA 0.9235 0.8496 0.9530

SSH 0.6509 0.7881 0.8269

SSA 0.8230 0.6664 0.8665

CSH 0.8326 0.8046 0.8712

CSA 0.6878 0.5815 0.9469

NGCH 0.7975 0.6153 0.9375

NGCA 0.8723 0.7049 0.8470

WMH 0.9045 0.8844 0.9454

WMA 0.9039 0.8740 0.9426

#it

A e e e e SIS
$quality

#i# Class.1 C(Class.2 C(Class.3
Aver.Com

#i# Com.Attack 0.6823 0.6471 0.7958
#i# Com.Defense .6408 .4653 0.8130
H## Com.Success 0.8176 0.7730 0.8911
Aver.Redu

Red.Success 0.7724 0.7514 0.8806

(@]
(@]

R2
R2.Success 0.9447 0.9721 0.9882
GoF
GoF 0.8210 0.7816 0.9075

As you can see from the list of results we have 3 classes with the following composition:
Class 1 has 18 teams (30%), Class 2 has 22 teams (37%), and Class 3 has 20 teams (33%).
In addition, we have a Global Quality Index (GQI) of 0.8251 which is greater than the GoF
index of the global model :

GoF global model
fut_pls$gof

[1] 0.7998

Class 1 Teams If we inspect the path coefficients of the teams in the first class, we will see
they have more or less similar values: Success = 0.5731, and Defense = 0.5731. However,
compared to the path coefficients of the other classes, we can clearly see that the Class 1
teams are definitely more defensive driven. We could dub these teams as the defensive teams:

192

teams in class 1
names (fut_rebus$segments [fut_rebus$segments == 1])

[1] "Almeria" "Malaga" "Osasuna"

[4] "RealValladolid" "RealZaragoza' "AstonVilla"

[7] "Chelsea" "Everton" "Liverpool"

[10] "ManchesterCity" "StokeCity" "WestHamUnited"
[13] "Bari" "Cagliari" "Catania"

[16] "InterMilan" "Napoli" "Udinese"

Class 2 Teams The teams in the second class have an Attack coefficient of 0.6401 and a
Defense coefficient of 0.5083. This implies that the Success of these teams is more driven
by their Attack although their Defense is still important:

teams in class 2
names (fut_rebus$segments [fut_rebus$segments == 2])

[1] "AtleticoMadrid" "DeportivoCoruna" "Espanyol"

[4] "Mallorca" "RacingSantander" "RealMadrid"

[7] "SportingGijon" "Villarreal" "Arsenal"

[10] "BirminghamCity" "Sunderland" "TottenhamHotspur"
[13] "ACMilan" "Atalanta" "Bologna"

[16] "Fiorentina" "Genoa" "Lazio"

[19] "Palermo" "Parma" "Sampdoria"

[22] "Siena"

Class 3 Teams

As you can see from the results, the teams in class 3 have the most disimilar

path values of all 3 classes. The Success of these teams is primarily driven by Attack (path
= 0.6881). It doesn’t mean that all the teams in the class are successful; instead, it means
that their Success (or lack of it) can be explained more by its Attack (or lack of it) than by
its Defense (path = 0.3654):

teams in class 3
names (fut_rebus$segments [fut_rebus$segments == 3])

[1] "AthleticBilbao" "Barcelona" "Getafe"

[4] "Seville" "Tenerife" "Valencia"

[7] "Xerez" "BlackburnRovers" "BoltonWanderers"
[10] "Burnley" "Fulham" "HullCity"

[13] "ManchesterUnited" "Portsmouth" "WiganAthletic"
[16] "Wolverhampton" "Chievo" "Juventus"

[19] "Livorno" "Roma"

193

9.3.1 Local Models

Although we have the path coefficients for each class in fut_rebus$path.coef, we can use the
function local.models() to calculate the PLS path models of each detected class, and then
plot the inner results of each local model. The way in which you should use local.models ()
is by indicating the "plspm" object as the first argument, and then the "rebus" object as
the second argument:

local plspm models
locs = local.models(fut_pls, fut_rebus)

what's in locs?
locs

$glob.model
Partial Least Squares Path Modeling (PLS-PM)

-
NAME DESCRIPTION

1 S$outer_model outer model

2 $inner_model inner model

3 $path_coefs path coefficients matrix
4 $scores latent variable scores

5 $crossloadings cross-loadings

6 $inner_summary summary inner model

7 SPeffects total effects

8 S$unidim unidimensionality

9 $gof goodness-of-fit

10 $boot bootstrap results

11 $data data matrix
-
You can also use the function 'summary'

##

##

$loc.model.1
Partial Least Squares Path Modeling (PLS-PM)

HED S e e e e e e e e e e eSS
#i# NAME DESCRIPTION

1 S$outer_model outer model

2 $inner_model inner model

3 $path_coefs path coefficients matrix
4 $scores latent variable scores

5 $crossloadings cross-loadings

194

#it
#Hit
##
#it
#it
#it
#it
##
##
#it
#it
#t
##
##
#it
#it
#t
##
##
#it
#it
#i#t
#it
##
#it
#it
#i#t
#Hit
##
##
#it
#it
##
##
##
#it
#it
#t
##
##
#it

$inner_summary
$effects
$unidim

$gof

10 $boot

11 $data

© 00 N O

summary inner model
total effects
unidimensionality
goodness—-of-fit
bootstrap results
data matrix

You can also use the function 'summary'

$loc.model.2

Partial Least Squares Path Modeling (PLS-PM)

NAME
$outer_model
$inner_model
$path_coefs
$scores
$crossloadings
$inner_summary
$effects
$unidim

$gof

10 $boot

11 $data

O© 0 NO O W N -

DESCRIPTION

outer model

inner model

path coefficients matrix
latent variable scores
cross-loadings

summary inner model
total effects
unidimensionality
goodness—-of-fit
bootstrap results

data matrix

You can also use the function 'summary'

$loc.model.3

Partial Least Squares Path Modeling (PLS-PM)

NAME
$outer_model
$inner_model
$path_coefs
$scores
$crossloadings
$inner_summary
$effects
$unidim

0 N O O b W N -

DESCRIPTION

outer model

inner model

path coefficients matrix
latent variable scores
cross—loadings

summary inner model
total effects
unidimensionality

195

9 $gof goodness-of-fit

10 $boot bootstrap results

11 $data data matrix

-
You can also use the function 'summary'

#it

##

attr(,"class")
[1] "local.models"

local.models() returns a list with the PLS-PM results of the global model, as well as
the results of each local model. For instance, the output of the local model Class 1 is in
locs$loc.model.1; likewise the output of the local model Class 3 is in locs$loc.model. 3.
Each of these results can be inspected using the summary() method or any other function
that applies to objects of class "plspm", like plot():

plot inner models
plot(locs$loc.model.1, main =)

plot(locs$loc.model.2, main =)

plot(locs$loc.model.3, main =)
Class 1 Class 2 Class 3
Attack Attack Attack

‘0.5194 ‘0.6402 \0.6881

— — —
Defense 0_57318uccess Defense 0_50828uccess Defense 0_3654Success

Figure 9.5: Comparing inner models

196

Examining the Loadings

We also have the loadings contained in fut_rebus$outer model$loading. However, we can

create a data frame rebus_loads containing the loadings of all models: the global and the

local ones. This data frame will let us examine the loadings in a better way with some

graphics:

data frame of loadings

rebus_loads = as.data.frame(cbind(fut_pls$outer_model$loading,
fut_rebus$loadings))

add column names
colnames (rebus_loads) = c(, paste(, 1:3, sep=""))

In addition, we will include information about the names of the indicators as well as the
construct to which they belong to:

create factor with names of indicators
aux_inds = factor(rownames(rebus_loads),
levels=c(, , , , , , , , ,)

add factor of indicator
rebus_loads$indicator = aux_inds

add constructs
rebus_loads$construct = rep(rownames(fut_path), sapply(fut_blocks, length))

what does it look like?
head (rebus_loads)

H##t Global Classl Class2 Class3 indicator construct
GSH 0.8912 0.8806 0.8953 0.9167 GSH Attack
GSA 0.9069 0.9235 0.8496 0.9530 GSA Attack
SSH 0.7841 0.6509 0.7881 0.8269 SSH Attack
SSA 0.7950 0.8230 0.6664 0.8665 SSA Attack
CSH 0.8425 0.8326 0.8046 0.8712 CSH Defense
CSA 0.7602 0.6878 0.5815 0.9469 CSA Defense

It would be nice to have a barplot comparing the loadings of the global and the local models
with ggplot2. The “problem” is that if we try to use rebus_loads as it is, we won’t get
further with our plotting attempts. The solution consists of using some functionalities of the
package reshape (also by Hadley Wickham) to manipulate the data frame of loadings into
the right format for ggplot ().

197

The trick is to use the function melt () which, as its name says, allows you to melt the
specified variables in your data frame. The idea is to transform rebus_loads into another
data frame that will have the same data but in a different format. In our case we want to
melt all the loadings in one single column while keeping the information about which model,
construct and indicator they belong to. Here is the code to do the melting:

package reshape
library(reshape)

melt loadings
melt_loads = melt(rebus_loads, id.vars = c(.),
variable_name =)

what does it look 1like?
head(melt_loads)

indicator construct model value

##t 1 GSH Attack Global 0.8912
2 GSA Attack Global 0.9069
3 SSH Attack Global 0.7841
4 SSA Attack Global 0.7950
5 CSH Defense Global 0.8425
6 CSA Defense Global 0.7602

What we are doing is telling melt () that we want to transform the data frame rebus_loads.
The way in which the transformation should be done is by keeping the information in
indicator and construct in separate columns (this is specified with id.vars). Because
we are keeping intact indicator and construct, the melting will be applied on the rest of
the available variables (Global, Classl, Class2, Class3). Actually, melt() is going to
stack the values in those columns to form a single column with all the loadings. To keep
tracking of the model to which the values belong to, we tell melt () to create a new column:
variable name = "model".

Now that we have the data frame melt_loads in the desired format, we can use ggplot () to
get a barplot like the one below. Notice that the bar colors are specfied using the function
brewer.pal() from the package RColorBrewer (just a personal preference):

package RColorBrewer

library(RColorBrewer)

plot loadings

ggplot(data=melt_loads, aes(x=indicator, y=value, fill=construct)) +
apply bar geom
geom_bar(stat =) +
require facetting based on model

198

facet_wrap(™ model) +

x-axis label

xlab("Indicators") +

y-axis-label

ylab("Loadings") +

add colors of bars

scale_fill_manual (values = brewer.pal(9, "PuOr")[c(3,7,2)]) +
labels of x-axis at an angle of 90 degrees

theme (axis.text.x = element_text(angle = 90, hjust = 1))

0.75-
0.50 -
0.25-
construct
0.00 -

n
o)
=
gloo Defense
- Success
0.75-
0.50 -
0.25-
0.00 -
| | | | | |
mmwmmm%g §UJU)U)U></></>LI>8 2
oowmoooo§; oowwoooo§;
z z z Z
Indicators

Figure 9.6: Comparative barplots of loadings

9.3.2 Quality of REBUS models

To assess the quality of the local models obtained by REBUS we use the function rebus.test ()
that performs permutation tests for comparing pairs of groups from a "rebus" object. The
function rebus.pls() has the following usage:

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

199

rebus.test(pls, reb)

The first argument pls is an object of class "plspm". The second argument reb indicates
the "rebus" object. This is how we use it:

apply rebus.test
fut_test = rebus.test(fut_pls, fut_rebus)

check results
fut_test

Validation for REBUS-PLS by permutation tests
-
List with the results for path coefficients,
loadings, and GoF in the following objects:

#Hit

Name Classes Elements in each object

$test_1_2 1 and 2 ...%paths, ...$loadings, ...$gof
$test_1_3 1 and 3 ...$paths, ...$loadings, ...$gof
$test_2_3 2 and 3 ...$paths, ...$loadings, ...$gof

What we get in fut_test is a list with elements for each pair of compared models. To see
the comparison of model Class 1 against model Class 2 just type:

class 1 -vs- class 2
fut_test$test_1_2

$paths

#i# Class.1 Class.2 diff.abs p.value sig.05
Attack->Success 0.5194 0.6402 0.1207 0.0099 yes
Defense->Success 0.5731 0.5082 0.0649 0.0099 yes
##

$loadings

#Hit Class.1 Class.2 diff.abs p.value sig.05
GSH 0.9102 0.9102 0.0147 0.0099 yes
GSA 0.9402 0.9402 0.0739 0.0099 yes
SSH 0.8529 0.8529 0.1373 0.0099 yes
SSA 0.7943 0.7943 0.1565 0.0099 yes
CSH 0.8771 0.8771 0.0279 0.0099 yes
CSA 0.7126 0.7126 0.1063 0.0099 yes
NGCH 0.6692 0.6692 0.1823 0.0099 yes
NGCA 0.8031 0.8031 0.1673 0.0099 yes
WMH 0.9197 0.9197 0.0201 0.0099 yes
WMA 0.9290 0.9290 0.0299 0.0099 yes

200

##

$gof

Class.l1 Class.2 diff.abs p.value sig.05
1 0.7951 0.7951 0.0456 0.0099 yes

As you can see from the results, none of the model parameters is significantly different
between Class 1 and Class 2. But what about the comparison between Class 1 and Class 37
Let’s find out:

class 1 -vs- class 3
fut_test$test_1_3

$paths

#i# Class.1 Class.3 diff.abs p.value sig.05
Attack->Success 0.5194 0.6881 0.1686 0.0099 yes
Defense->Success 0.5731 0.3654 0.2077 0.0099 yes
##

$loadings

#Hit Class.1 Class.3 diff.abs p.value sig.05
GSH 0.9251 0.9251 0.0362 0.0099 yes
GSA 0.9268 0.9268 0.0295 0.0099 yes
SSH 0.8447 0.8447 0.1760 0.0099 yes
SSA 0.9031 0.9031 0.0436 0.0099 yes
CSH 0.8390 0.8390 0.0387 0.0099 yes
CSA 0.8239 0.8239 0.2591 0.0099 yes
NGCH 0.8825 0.8825 0.1400 0.0099 yes
NGCA 0.8014 0.8014 0.0253 0.0099 yes
WMH 0.9270 0.9270 0.0409 0.0099 yes
WMA 0.9103 0.9103 0.0387 0.0099 yes
##

$gof

Class.l Class.3 diff.abs p.value sig.05
1 0.8296 0.8296 0.0922 0.0099 yes

In this case, we have two relevant differences in the loadings: one with the indicator CSA (% of
matches with no conceded goals away), and the other one with the indicator NGCH (negative
goals conceded at home). Both manifest variables have loadings smaller in Class 1.

The last pair comparison that we have to examine is the comparison of Class 2 and Class 3:

class 2 -vs—- class 3
fut_test$test_2_3

201

#Hit
#Hit
##
##
#it
#it
#it
##
##
#it
#it
#t
##
##
#it
#it
#t
##
##
##
#it

$paths

Attack->Success

Defense->Success

Class.2 Class.3 diff.abs p.value sig.05

0.6402 0.6881
0.5082 0.3654

0.0479 0.0099 yes
0.1429 0.0099 yes

Class.2 Class.3 diff.abs p.value sig.05

0.
.8162
. 8487
.6426
.8053
. 7533

O O O O O O O O o

8176

.8091
.7393
.8608
.8275

0.
.1035
.0388
.2001
.0666
.3654
.3222
.1421
.0610
.0686

O O O O O O O o o

0215

O O O O O O O O o o

.0099
.0099
.0099
.0099
.0099
.0099
.0099
.0099
.0099
.0099

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Class.2 Class.3 diff.abs p.value sig.05

$loadings
GSH 0.8176
GSA 0.8162
SSH 0.8487
SSA 0.6426
CSH 0.8053
CSA 0.7533
NGCH 0.8091
NGCA 0.7393
WMH 0.8608
WMA 0.8275
$gof

1 0.7675 0.7675

0.1377 0.0099

yes

Interestingly, we have three model parameters with a significant difference. On one hand we
have two loadings that show smaller values in Class 2: CSA and NGCH. On the other hand, we
have that the gof value of Class 2 is also significantly smaller than the one of Class 3.

9.3.3 Final Comments

REBUS-PLS is able to detect unobserved heterogeneity not only when it affects the whole
model (i.e. both the measurement and structural models), but also when it focuses only on
the structural model level or on the measurement model level.

REBUS is limited to reflective measurement models because the way in which the measure-
ment residuals are calculated.

9.4 Reading List

e REBUS-PLS: A response-based procedure for detecting unit segments in PLS

Path Modeling by Vincezo Esposito Vinzi, Laura Trinchera, Silvia Squillacciotti and

202

Michel Tenenhaus (2008). This paper in the journal Applied Stochastic Models in
Business and Industry (24: 439-458) presents the REBUS methodology.

e PLS Path Modeling: From Foundations to Recent Developments and Open Issues
for Model and Improvement by Vincenzo Esposito Vinzi, Laura Trinchera and Silvano
Amato (2010). In Chapter 2 of the Handbook of Partial Least Squares, the section 2.4.1
is dedicated to describe the REBUS-PLS Algorithm.

e Laura Trinchera’s PhD Thesis (2008). The doctoral dissertation of Laura Trinchera
about REBUS-PLS is available at:
http://www.fedoa.unina.it/2702/1/Trinchera _Statistica.pdf.

e Detecting Unobserved Heterogeneity in the Relationship Between Subjective Well-
Being and Satisfaction in Various Domains of Life Using the REBUS-PLS Path
Modelling Approach: A Case Study by Luca Zanin (2011). In this paper, published
in the journal Social Indicators Research (DOI 10.1007/s11205-011-9931-5), the au-
thor shows an application of REBUS using a model to study the relationship between
Subjective Well-Being (SWB) and Satisfaction in various domains of life.

References about FIMIX-PLS:

e Capturing customer heterogeneity using a finite mixture PLS approach by Carsten
Hahn, Michael D. Johnson, Andreas Herrmann, and Frank Huber (2002). This article
in the journal Schmalenbach Business Review (54-3: 243-269), is the original paper
that proposes the FIMIX approach for PLS Path Modeling.

e Finite Mixture Partial Least Squares Analysis: Methodology and Numerical Ex-
amples by Christian Ringle, Sven Wende and Alexander Will (2010). As Chapter 8 of
the Handbook of Partial Least Squares, the authors describe the FIMIX methodology
with an application on empirical data.

e Capturing and Treating Unobserved Heterogeneity by Response Based Segmenta-
tion in PLS Path Modeling. A Comparison of Alternative Methods by Computa-
tional Experiments by Vincenzo Esposito Vinzi, Christian Ringle, Silvia Squillacciotti
and Laura Trinchera (2007). This working paper, from the ESSEC Business School,
describes three approaches for unobserved heterogeneity in PLS-PM: FIMIX-PLS, PLS
Typological Path Modeling, and REBUS-PLS. It also compares the three approaches
using simulated data. Available at:
http://www.essec.fr/faculty /showDeclFileRes.do?declld=7153&key=__workpaper__

e Segmentation for Path Models and Unobserved Heterogeneity: The Finite Mix-
ture Partial Least Squares Approach. by Christian Ringle (2006). This is a working

http://www.fedoa.unina.it/2702/1/Trinchera_Statistica.pdf
http://www.essec.fr/faculty/showDeclFileRes.do?declId=7153&key=__workpaper__

203

paper published by University of Hamburg in Research Papers on Marketing and Re-
tailing (No. 35, November 2006). 1t contains a detailed description of FIMIX-PLS with
an application on survey data from Benetton. Available at:
http://mpra.ub.uni-muenchen.de/10734/1/MPRA _paper_10734.pdf

http://mpra.ub.uni-muenchen.de/10734/1/MPRA_paper_10734.pdf

204

CC BY-NC-SA 3.0 Gaston Sanchez PLS Path Modeling with R

Appendix A

Historical Overview of PLS-PM

Statistical methods are not created instantly or magically. Sometimes we may get that false
impression of “spontaneous generation” but obviously it is just a distorted view of the reality.
Like any other technology and methodology, the family of PLS methods did not appear out
of the blue. Herman Wold, the father of PLS, didn’t sit down one day and said: “Oh, I'm
so bored today. I need to do something, but what? Oh, I know!, let’s use least squares
regressions to develop an algorithm for calculating principal components”.

My humble opinion is that you cannot fully understand the PLS methods without taking into
consideration their history and development. It is true that you can apply the PLS methods
and live happily without knowing their origins. But if you are like me, that is not enough
when you want to completely understand not only the nuts and bolts behind PLS but also
the motivations and context under which the PLS toolkit has been developed.

The truth is that statistical textbooks don’t usually talk about the historical framework and
developments that give rise to new methods. Admittedly, textbook authors are mathemati-
cians, statisticians, analysts, but not historians. I am not a historian either, but I've spent
a decent amount of time researching the history of PLS. The content of this appendix is the
result of that quest. I'm not pretending to cover all the events and every single historical
aspect behind PLS-PM. Instead, my goal is to provide enough material so we can have the
“big PLS picture”.

1 Preliminaries

The family of PLS methods has its roots in the amazing work undertaken by the Swedish
statistician Herman Wold and his research group. Over a long period of time, various aspects
of the PLS methods were extracted from other techniques and then refined and adapted to
tackle different types of data analysis tasks. As a matter of fact, Wold and his team spent

205

206

about two decades, from middle 1960s to early 1980s, developing and improving a series of
algorithms based on Ordinary Least Squares regressions to handle several modeling problems.
Likewise, different names for these methods were proposed over the years such as Nonlinear
Iterative Least Squares (NILES), Nonlinear Iterative Partial Least Squares (NIPALS), Partial
Least Squares basic design, and PLS soft modeling, among others.

This first period of evolution comprised a variety of analysis and modeling problems with data
from social sciences (e.g. economics, psychology, sociology) that were tackled with different
versions of least-squares-based iterative algorithms. Then in the early 1980s, Herman’s son,
Svante Wold, took over the development of the PLS principles and shifted the applications to
chemistry and the food industry. This change of the PLS methods was focused on regression
problems and soon after the PLS regression movement became firmly established.

Overall, the road traveled by the PLS methods along its development process is an inter-
twined path that has resulted nowadays in two main different schools of PLS analysis: 1)
PLS regression models (PLS-R) and 2) PLS path modeling (PLS-PM). Within the field of
chemometrics and related disciplines, the PLS acronym is synonym of PLS regression tech-
niques. In contrast, within the fields of marketing research, information technology and other
social science disciplines, the term PLS is synonym of PLS path modeling. Moreover, the
contributions of several disciplines to the PLS landscape have created a comprehensive liter-
ature in which is not unusual to find different terms referring to the same concept while at
the same time, and probably worst, find identical names used to designate different notions.

As you can imagine, the ramification of the PLS principles into different branches and fields
of application, the lack of uniformity in terminology, combined with the fact of having two
main authors (father and son) with the same last name, are the perfect mix for a puzzling
collage. These factors are the primary source of confusion and misunderstanding that many
users and readers, both inside and outside the PLS communities, stumble upon when dealing
with the family of PLS methods.

What is usually told

If you don’t have access to a couple of references that talk about the history of PLS, the idea
that you get from most articles and publications may lead you to get an incomplete picture
of what happened. The condensed fairy tale version of the story that usually appears in a
variety of texts follows this pattern:

Once upon a time, a Swedish professor called Herman Wold was working on
econometric models. Then he developed the preliminary idea of partial least
squares in his paper of 1966 where the NILES procedure was introduced. This
procedure was later named NIPALS in the early 1970s and it kept that name
for several years. Then in the late 1970s, the PLS approach to path models with
latent variables was formally introduced, although it was presented under the label

207

of soft modeling. A modification of the PLS ideas were applied in chemometrics
by Svante Wold, and the first published paper on PLS regression appeared in
1983. This PLS regression version became such a hit that its popularity and
success eclipsed the other PLS methods ... And the PLS methods lived happily
ever after.

Although this synopsis is not false, it is very far from being an accurate story. We can find
a better story by checking what Herman Wold says in his memoirs:

What you probably didn’t know

(extract from Wold, 1982):

“Sociology in the early 1960s opened a new era in quantitative system analysis by
O. T. Duncan’s merger of the latent variables in psychology and the path mod-
eling with manifest variables in econometrics ...Karl G. Joreskog in 1967 was
the first to bring the computer to operative use for Maximum Likelihood (ML)
estimation of factor models, and in 1970 Joreskog launched his LISREL algorithm
for ML estimation of path models with latent variables. When seeing the LIS-
REL algorithm I realized that principal components and canonical correlations
can be interpreted as path models with one and two latent variables, respectively,
and with each latent variable explicitly estimated as a weighted aggregate of its
indicators; this gave me the incentive to extend the Fix-Point algorithm to gen-
eral path models with latent variables indirectly observed by multiple indicators.
There were two stumbling blocks in this endeavor: the step from two to three
latent variables, and the step from one to two inner relations between the la-
tent variables. Once these stumbling blocks were overcome it was easy to design
general algorithms for iterative estimation of path models with latent variables.
The ensuing algorithms I first called NIPALS, later PLS. An array of somewhat
different PLS versions was designed; in late 1977 I arrived at what I regard as
the end station: the basic design for PLS estimation of path models with latent
variables, or briefly PLS soft modeling.”

I am not expecting you to understand everything in the above paragraph. But I think it gives
us enough hints of the origins of PLS. If you already know about the history of structural
equation models, some of the events described by Wold should be familiar to you. To connect
the dots and get a broader vision of the origins of PLS, we’ll begin with a short biography
of Herman Wold. Then, we will cover the antecedents of PLS, describe its evolution, and
mention the current state in the PLS-PM arena.

208

2 Herman Wold

Let’s begin with Herman Wold, the creator of PLS. Who was Herman Wold? The father
of PLS was the great Swedish statistician and econometrician Herman Wold. In fact, his
complete name was Herman Ole Andreas Wold, and he was not born in Sweden but in
Norway, in the small town of Skien in december 25th, 1908. Herman was the youngest of
a family with six brothers and sisters that moved to Sweden in 1912 near Stockholm where
he spent the rest of his life. Herman began his college studies in 1927 in the University of
Stockholm, and he took courses in physics, mathematics, and economics. After graduating in
1930, he started to work for an insurance company gathering data about fluvial precipitation
in Sweden in order to design a fee for insurances against damages caused by rains. However,
Herman didn’t have the intention to stay in the actuarial field and he went back to the
academia for studying a PhD under the guidance of Harald Cramér.

Herman received his PhD in 1938 and he was a professor of mathematical statistics and
actuarial mathematics until 1942 when he was offered the chair of the Department of Statistics
at the University of Uppsala. Indeed, he remained in that position until 1970 when he moved
to the University of Gothenburg where he worked until his retirement in 1975.

In 1940 he married Anna-Lisa Arrhenius and they had three children, two girls and one boy
(Svante Wold, born in 1941). After his retirement in 1975 he returned to Uppsala to live,
but it was an active retirement; he received support for his continuing research from the
Volkswagen Foundation and spent much time at the University of Geneva and the University
of Uppsala as Professor Emeritus.

Wold was elected to Fellowship of the Institute of Mathematical Statistics in 1946, the Amer-
ican Statistical Association in 1951, Honorary Fellowship of the Royal Statistical Society
London in 1961, and an Honorary Doctorate from the Technical Academy of Lisbon in 1965.
He was also elected to membership of the Swedish Academy of Sciences in 1960, and served
as a member of the Nobel Economic Science Prize Committee from 1968 to 1980. Wold was
also active in international statistical econometric affairs. He served as Vice-President of the
International Statistical Institute from 1957 to 1961, was elected to Presidency of the Econo-
metric Society in 1966, and Honorary Membership of the American Economic Association
and the American Academy of Arts and Sciences in 1978. Herman Wold died on february
16th, 1992.

Wold’s Work Periods

The work of Herman Wold can be roughly divided in four main periods:
e (1932-1938) undergraduate studies and doctoral thesis on stationary time series

e (1938-1952) econometric analysis of consumer demand

209

e (1945-1970) econometrics and path models with directly observed variables
e (1966-1992) systems analysis and path models with indirectly observed variables

The most remarkable feature is that throughout these 60 years his major contributions were
based on the least squares (LS) principle. One of the best testimonies of his involvement
with LS can be found in the following excerpt from Wold’s autobiographical notes (1982):

“Since the 1930s the mainstream of contemporary statistics has been the Maxi-
mum Likelihood (ML) principle. ML is a highly developed body of joint proba-
bility distribution, usually a multivariate normal distribution. In the triumphant
ML evolution, Least Squares (LS) was left in a backwater. LS being an au-
tonomous optimization principle, it suddenly dawned upon me that the rationale
of LS could be established on a distribution-free basis, by subjecting the predictive
relations of the model to predictor specification (1959-1963). In the ensuing LS
framework I initiated first the fix-point method for estimation of interdependent
systems (1956, 1966) and then the partial least squares (PLS) method of path
models with latent variables indirectly observed by multiple indicators (1971-72).
The PLS approach, or briefly soft modeling, has kept me busy ever since”.

2.1 The Econometrician

Herman Wold was an econometrician and a statistician. A lot of his work had to do with
econometrics, and it is not surprise that the development of the PLS methods is related with
some of the econometric projects that Herman Wold was working on.

If we were to consult any book about the history of econometrics, we would see that the
period of emergence of this discipline began in the early twentieth century with two main
events. One took the form of the development of time-series analysis. The other took the
form of demand analysis. Actually, the first two work periods of Herman Wold coincided
precisely with these two main research areas in econometrics. While his graduate studies were
related to time-series analysis, his postdoctoral activities (from 1938-1952) were focused on
demand analysis and econometric model building. In both topics, and for the rest of his
professional career, his research was based on the Least Squares principle for estimation and
modeling purposes.

You have to understand that Wold got involved in econometrics when that field wasn’t even
named like that. Today we find entire bookshelfs dedicated to econometrics in any economics
section of a college library. But back in the days when Herman was working in that area,
there were no such defined notions of econometrics as today. The term was coined by Ragnar
Frisch in 1926, but it didn’t catch the attention until years later.

210

Time Series Studies (1932-1938)

What Herman Wold studied in his graduate years were topics about probability and time
series. As a matter of fact, his doctoral dissertation A Study in the Analysis of Stationary
Time Series, is about stationary stochastic processes and it contains his famous theorem on
time series decomposition.

From the historical point of view, it is worth mentioning the use that Wold made of the
least squares principle for his doctoral work. Herman studied the one-step prediction of a
time series using linear least squares, an approach later known as the Wold decomposition:
the decomposition of a time series into the sum a purely non-deterministic component and
a deterministic component (for which there is an exact linear predictor). To naked eyes this
might not seem to be very relevant but the truth is that Wold had already started to embrace
least squares as one of his favorite analytical tools, a tool that would be the foundation for
the rest of his work until the development of Partial Least Squares.

Consumer Demand Analysis (1938-1952)

In the summer before presenting his doctoral dissertation, Wold was appointed by the Sewdish
government to perform an econometric analysis of consumer demand on the basis of available
Swedish statistics. After his dissertation, Wold carried out the study of consumer demand
analysis from 1938 to 1940. The main line of approach was to combine the analysis of
family budget data and market statistics (time-series data) so as to obtain a unified picture
of the demand structure in Sweden in 1920-38. Although the government commission only
lasted two years, Wold spent about 14 years doing research and time series analysis of the
collected data, as well as publishing several articles between 1938 and 1947. All this work
was published in the dual form of a research report, first, and then a specialized textbook on
econometrics: Demand Analysis (published in 1952).

2.2 The Least Squares Affair

Directly related with his work on Time Series and Demand Analysis, Wold got involved
in a peculiar confrontation that happened within econometrics during the 1940s: Ordinary
Least Squares against Maximum Likelihood. This period is crucial for the development of
PLS because this is the time when Wold, somewhat stubbornly, embraced the Least Squares
principle against all other methods, especially Maximum Likelihood. To understand why, we
need to talk a bit more about econometrics and demand analysis.

During the first half of the twentieth century, one of the greatest challenges in econometrics
was the estimation of demand analysis equations and simultaneous equation systems. Before
the 1940s, the main analytical tool used for this task was ordinary least squares (OLS).

211

Although it was not the perfect tool, OLS was able to get the job done in most occasions.
However, as models started to become more sophisticated, there were more and more cases
where OLS simply didn’t seem to work. Consequently, the method of least-squares started
to being criticized and some econometricians began to stress out that the device was not
foolproof if applied uncritically.

Partly due to lack of understanding, partly due to conceptual confussions, econometric the-
orists were burdened with a myriad of problems that took many years to be solved or to be
aware of. We're talking about things like identification, measurement errors, multicollinearity,
model choice, and so forth, that are known to affect not only OLS but many other estimation
methods when applied to economic time-series and simultaneous equations. These issues are
now taught in any basic econometrics course, but back in Wold’s days all these problems were
the cause of so many headaches for econometricians trying to figure out how the economic
systems work.

Haavelmo’s wholesale dismissal of OLS

The main protagonist of this period was Trygve Haavelmo (Nobel prize in Economics, 1989)
who highlighted the problems of Least Squares when applied for estimating simultaneous
equation systems. Haavelmo first noticed that there were problems in the OLS method for
estimation in a simultaneous equation model. For instance, let us consider a very simple
model with two simultaneous equations like this one:

Y =aX + e
X =bY + es
where e; and ey are error terms that follow a multinormal distribution N (0, V) with
2
_|oin O
V= [0 0'52:|

If we use X to explain Y, the OLS solution of the first equation would imply that:
EY|X)=aX
However, solving Y anatically we get that:

e1 + aeo

Y =
1—ab

and the correct conditional expectation allowing for simultaneity should be:

2 2
boi, + aos,
2 2 2
b’ci, + 03,

E(Y|X) =

212

To solve the problem, Haavelmo turned to the principle of Maximum Likelihood (ML) whose
appealing properties soon caught the attention of most econometricians. Consequently,
Haavelmo’s revolution in econometric models and his advocacy for ML was perceived as
almost equivalent to his discovery of the OLS problem.

Wold’s effort to rescue OLS

Having used OLS regression extensively in his earlier works, Herman Wold felt deeply dis-
turbed by Haavelmo’s wholesale dismissal of OLS. Being in shock by the criticisms, Wold
decided to challenge Haavelmo’s ML approach by checking whether OLS was always in-
consistent when applied to simultaneous equations. If that were the case, OLS would also
be inconsistent when applied to his consumer demand models. In 1946, Bentzel and Wold
first distinguished whether a system of simultaneous equations was recursive (later called
causal chain systems) or non-recursive (later called interdependent systems). They then
proved the equivalence of LS estimation with ML estimation in a recursive system when the
disturbances of different equations were independently and normally distributed.

Behind Wold’s stance against ML, there were deeper conceptual reasons for his opposition.
To understand this let us consider a basic demand and supply model formed by the following
simultaneous equations system:

Quantz’ty,? = a1 Price; + a;Cost,; demand

Quantityf = by Price; + boIncome, supply

Notice how both quantity demanded and quantity supplied are determined by price, but
there is no way in which price is determined. Wold disagreed with this model of demand
and supply in which both relationships were determined within the same time period. He
found it difficult to believe that the economic system was determined simultaneously. For
him, causal forces only worked in one direction at any one time and these forces should be
reflected in the models. Instead, Wold preferred to rearrange the variables in a time-based
sequence like the following one:

Quantity® = by + by Price;_; supply
Price; = ag + alQuantityf) demand

Herman Wold had a particular perception of econometric models: for him the models should
follow a causal chain format (i.e. a recursive system). Wold put emphasis on knowing the
interrelations of all the variables in terms of the time lapse between causes and effects. In
this way, one could reduce the system of dynamic causal relations to one final form equation.
The condition to achieve such reduced form involved no simultaneously determined equations
like Haavelmo suggested.

213

In summary, the main stream in econometrics for estimating simultaneous equation systems
was the one based on the method of Maximum Likelihood. Wold was not part of this
group. On the contrary, he always tried in one way or another to find a solution by least
squares. Making distinction between simultaneous equations of recursive and non-recursive
type, Bentzel and Wold showed that Haavelmo’s wholesale dismissal of OLS estimation of
the structural equations was applicable to non-recursive systems only, but not for recursive
systems. For approximately the following 15 years, Wold went on a tortuouse mission to find
an OLS solution for non-recursive systems.

2.3 The Philosopher of Science

Herman Wold was also deeply involved in topics related to Philosophy of Science. During
the 1950s and 1960s Wold’s research interest broadened from econometrics to other non-
experimental analysis in general, and to the philosophy of science. In particular, a lot of
his work in this field spinned around the prickly notion of causality. Although it occupies a
special place within the philosophical arena, it is in the Philosophy of Science scenario where
causality is one of the rockstars, a very controversial one by the way.

Through the 1950s Herman Wold dedicated a considerable part of his work to discuss notions
of model building and causality. Keep in mind that these topics that were fundamentally
controversial at that time. By the early 1950s, Wold began to place emphasis on the operative
use of OLS regressions for causal purposes. Specially when applied to econometric models,
he focused on distinguishing causal chain (or recursive) systems versus interdependent (or
non-recursive) systems. He put emphasis on two points:

e the causal interpretation and operative use of the structural form of recursive systems
(causal chain systems).

e the obscurities around the structural form of interdependent systems

As we saw, the choice of regression in econometrics was a very unstable ground to step on
and OLS was having a lot of bad press. On top of that, there was the delicate issue of
causal interpretation of OLS regressions. Throughout the 1940s causal arguments were still
practically taboo in the socioeconomic and behavioral sciences, and these arguments were
mostly discussed under the table. At the same time, Sewall Wright’s path models in genetics
were also started to catch the attention of sociologists for purposes of causal analysis. In
addition, a gradual comeback of causal notions gained attraction from several independent
but almost simultaneous publications by Paul Lazarsfeld, Herbert Simon, and Wold.

214

The Causality Crisis

How does all this relate to PLS? Well, the period of time at the end of the 1950s is crucial
for the posterior development of PLS. Wold had already proved that Least Squares could be
applied for recursive models. His big obstacle, however, was the estimation of non-recursive
systems, or what Wold used to called: interdependent models. This was one of the biggest
challenges he had to deal with in his research career, at least during the 1950s.

In his quest to find an OLS solution for non-recursive systems, but also in his journey across
the causal labyrinth, all the roads he explored were dead-end roads. One attempt after
another, Wold was not able to solve the non-recurvie problem and he finally ended up in a
blind alley. By the end of 1950s, realizing that his discourse about the notions of causality
and modeling had little or no impact in his analyses, he finally gave up. During a visiting
period to the University of Columbia between 1958 and 1959, he suffered what we could call
an “intellectual crisis”.

After this melt down, he agreed to push the causal arguments on causal chains and interde-
pendent systems aside. He made a radical decision: give up all what he had done and start
all over again from a new conceptual and philosophical perspective. Wold made a new start
on the basis of what he denominated predictor specification. This new approach in turn
led very soon to the Fix-Point method and eventually to Partial Least Squares.

What’s behind this stuft of predictor specification? Basically, Wold decided to leave causal-
ity aside and asked himself what could be achieved with a predictive relation. The joint
multivariate distribution assumptions typically used in Maximum Likelihood were also to be
left aside. The only thing that Wold wanted to take into account was the systematic part
of a predictive relation expressed as the corresponding conditional expectation —which he
called predictor specification— In this way, by requiring just mild supplementary assump-
tions, Wold achieved to use OLS regression for estimating coefficients that are consistent in
the large-sample sense. Moreover, he extended the notion of predictor specification to models
with multiple relations of blocks of variables, which in turn would lead to PLS.

3 Pre-PLS Era

After giving up the causal arguments for the estimation of structural equations, Herman
Wold started to work on a new methodology that he dubbed the Fix-Point (FP) method.
The FP method was developed as his new proposal to estimate interdependent (ID) systems
by least squares.

Around the beginning of the 1960s Herman had achieved some progress with his work on
ID systems using his concept of predictor specification. At that time, he was also starting
to show his work to the public in some conferences. In December of 1964 he travels to the

215

United States on a tour of seminars to present his fix-point method for analyzing Generalized
Interdependent (GEID) systems. Don’t worry about these systems. The important thing is
that during one of his seminars at the University of North Carolina, professor G. S. Tolley
asked Wold whether it was possible to apply his procedure to compute principal components.
After a more detailed discussion with Tolley and R. A. Porter, Wold got the idea of applying
his fix-point method to calculate principal components. Years later, Wold would write that
this suggestion was for him one of those moments of good luck that allowed him to open new
research lines and develop the framework for the Partial Least Squares methods.

Iterative Least Squares

The first paper that presents the basis of what a decade later would give rise to PLS Path
Modeling is an article published in the book Research Papers in Statistics. Festschrift for
J. Neyman printed in 1966 and edited by F. N. David. The paper written by Herman
Wold is Nonlinear Estimation by Iterative Least Squares Procedures. Under the acronym
NILES, Wold introduces the framework and problems analyzed by what he calls iterative
least squares procedures. It is worth noting that in this first publication, Wold does not
mention the term partial nor PLS. He only talks about NILES procedures. This article is a
catalogue of applications that can be treated by different iterative algorithms based on least
squares regressions. These repertoire of applications illustrates the problems that his team
in the University Institute of Statistics at University Uppsala had been working on such as:

e Principal components

e (Canonical correlations

Hybrid models of principal components, canonical correlations, and multiple regression

Principal components in the case of partial information (i.e. with missing data)

Interdependent systems

Quotient regression

Factor analysis

A servomechanism that involves errors both in the equations and the variables

Wold recognizes that until that moment, there is nothing that accounts for the analyzed
problems that his iterative least squares methodology is capable of. He mentions that:

“The validity and possible advantages of the NILES approach have to be judged
from case to case. At this early stage of development it is too early to venture
a broad appraisal. It is safe to say however that the NILES procedures, thanks

216

to their simplicity and their adaptability to the mathematical structure of the
various models, open up new vistas in the domain of nonlinear estimation”

PCA by Least Squares

Directly realted to the first publication of NILES we find another publication that same year
(1966) on the Estimation of Principal Components and Related Models by Iterative Least
Squares. In the early 1950s Wold had the chance to meet the famous psychometrician Louis
Thurstone and his wife Thelma. Impressed and inspired by the work done by Thurstone and
the developments in Psychometrics of that time, Wold decided to organize in Uppsala an
international symposium about Factor Analysis in march 1953: the Uppsala Symposium on
Psychological Factor Analysis. As a matter of fact, Wold gave a talk on Monte Carlo Simula-
tion with principal components: A Monte Carlo illustration of principal components analysis.
This talk in turn, was inspired by the paper of Paul Whittle (one of Wold’s students): On
principal components and least squares methods of factor analysis. This would be something
irrelevant if it wasn’t because this simulation study will be used more than a decade later
for his paper on PCA with least squares published in the book Multivariate Analysis 111,
Proceedings of the Third International Symposium on Multivariate Analysis (383 - 407).

The acronym NILES is used by Wold as an umbrella term to group different linearizing
devices to estimate non-linear models. Even though he still does not use the word Partial,
this concept is already reflected in his procedures: the idea of split the parameters of a model
into subsets so they can be estimated in parts.

NIPALS Period

A couple of years later, in 1969, another paper Nonlinear iterative partial least squares
(NIPALS) estimation procedures appears in Bull Inst Internat Statis. This is the pub-
lication where the words Partial Least Squares are used for the first time but still it does
not imply an approach for latent variable models. Wold starts using the acronym NIPALS
instead of the NILES acronym previously used in 1966. Then in 1973 another publication
about the iterative algorithms that Wold’s team was working on is published under the name:
Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some Current
Developments.

The term NIPALS modeling is used to cover a number of different but closely related ap-
proaches to solve the analytic problems of special sciences:

“The present report, drawing from the experiences that have emerged in the
theoretical and applied work with NIPALS modeling, focuses on the potential
use of the NIPALS approach in the recent many-faceted development of path
models in the social sciences.”

217

4 Soft Modeling

In 1971, Karl Joreskog introduces his LISREL approach for structural equation models with
latent variables. Motivated by this type of models, Herman Wold adapts his NIPALS mod-
eling to approach the SEM models:

“I see the birth of PLS soft modeling as another case of serendipity. In 1971
when [saw Joreskog’s LISREL algorithm for Maximum Likelihood estimation of
path models with latent variables, it struck me that the same models could be
estimated by suitable elaboration of my two algorithms for principal components
and canonical correlations”

A series of publications in 1970s reflect the transformation and evolution of ideas behind the
PLS methods:

e Wold H (1975) From hard to soft modelling. in H. Wold (ed.) Modelling in complex
situations with soft information. (Paper. Third World Congress on Econometrics;
Toronto, Canada)

e Wold H (1975) Path models with latent variables: The Non-Linear Iterative Partial
Least Squares (NIPALS) approach. In J. Gani (ed.), Perspectives in probability and

statistics: Papers in honour of M.S. Bartlett on the occasion of his sixty-fifth birthday
(117-142).

e Wold H (1976) Open path models with latent variables: The NIPALS (Nonlinear It-
erative Partial Least Squares) approach. Uppsala, Sweden: University, Department of
Statistics.

At the end of the 1970s the NIPALS term is replaced by the PLS acronym. Then, in Oc-
tober of 1980 Wold and Joreskog organized a workshop at Cartigny, Switzerland, about the
two structural equation modeling approaches: the distribution-based maximum likelihood
(LISREL), and the distribution-free least squares approach (PLS). The results from that
workshop were edited by Joreskog and Wold, and published in 1982 as two volumes: Sys-
tems Under Indirect Observation: causality, structure, prediction; with Part I dedicated to
LISREL, and Part II dedicated to PLS.

The 1990s Gap

In the mid-1980s the PLS methods seemed to be living an era of expansion and consolidation.
On one hand, PLS regression methods are being successfully developed in chemometrics. On
the other hand, Jan-Bernd Lohmoller develops LVPLS, the first computer program integrat-
ing the basic PLS-PM algorithm and the extensions made by Lohmoller. Moreover, the
publication of Lohmoller’s book at the end of the 1980s gives the impression that it is a

218

matter of time for PLS to be fully applicable in the social sciences. However, the decade of
1990s was a period that witnessed a metamorphosis of the PLS framework in which the PLS
approach to latent variable path models was forgot, and only the PLS regression method
was conserved for further development. The PLS path modeling “leftovers” were left aside
as a mere curiosity, only appreciated by a handful of researchers in USA working primarily
in marketing research and information technologies. Perhaps the oly remarkable milestone
of the 1990s is the deveopment by Wynne Chin of PLS-Graph, the first PLS-PM program
with a graphical user interface for drawing path diagrams.

2000s: The Consolidation

Although PLS-PM suffered from lack of popularity in the 1990s, the first decade of 2000s
witnessed the consolidation of PLS Path Modeling. Part of the reason PLS-PM acquired
an increasing popularity during the the first decade of 2000s is because of the impulse given
by the French school of data analysis. The other major reason is because of the Furopean
Satisfaction Index System (ESIS) project that boosted the development of PLS-PM software
and its application in marketing studies. Also, the series of international symposia exclusively
decidated to PLS methods contributed to its widespread around the world.

5 PLS-PM Related Timeline

1889 Sewall Wright’s birth, December 21 (father of path analysis).
1908 Herman Wold’s birth, December 25 (father of PLS).
1918 First paper on path analysis On the Nature of Size Factors by Sewall Wright.

1920 First path diagram published in The Relative Importance of Heredity and Environment
in Determining the Piebald Pattern of Guinea Pigs by Sewall Wright.

1925 First application of path analysis in econometrics Corn and hog correlations by Sewall
Wright.

1938 Wold’s Doctoral dissertation: A Study in the Analysis of Stationary Time Series.

1946 Wold and Bentzel publish the paper On statistical demand analysis from the viewpoint
of simultaneous equations where they prove that recursive systems estimated by OLS
have an equivalent solution to ML estimates.

1950s

219

1953 Book about econometrics by Herman Wold in association with Lars Jureen: Demand
Analysis. A study in econometrics.
Celebration of the Uppsala Symposium on Psychological Factor Analysis organized by
Herman Wold.

1959 Herman Wold suggests Karl Joreskog to do a dissertation on factor analysis.

1960s

1963 Herman Wold conceives the Fix-Point method at the Econometric Week of the Vatican
Academy of Sciences.

1964 During the first seminars on the Fix-Point method at the University of North Carolina
in December 1964, the estimation of principal components by the NILES procedure
was brought to Wold’s attention by G. S. Tolley and R. A. Porter.

1965 Talk On the estimation of principal components and related models by iterative least
squares presented by Wold in the International Symposium on Multivariate Analysis
held at the University of Dayton, Ohio, USA.

1966 First publications of NILES procedures: (1) Nonlinear Estimation by Iterative Least
Squares Procedures and (2) Estimation of Principal Components and Related Models
by Iterative Least Squares.

Introduction of path analysis into sociology with the publication of Path Analysis in
the American Journal of Sociology by Otis D. Duncan.

1970s

1970 Inspired by the work of Arthur S. Goldenberger, Karl Joreskog conceives the idea of
combining econometric and psychometric models into a single mathematical model.

1971 Inspired by the work of Karl Joreskog’s LISREL for path models with latent variables,
Wold conceives the idea of estimate the same models by his iterative algorithms of least
squares regressions.

1973 Wold changes the name of the NILES procedures to NIPALS modeling with the publi-
cation of Nonlinear Iterative Partial Least Squares (NIPALS) modeling: Some current
developments.

Publication of the books that set the foundations of the French data analysis school
L’Analyse des Données. Tome 1: La Taxinomie et Tome 2: L’analyses des Correspon-
dances by Jean-Paul Benzécri.

1980s

220

1981

1982

1985
1989

Publication of the book The Fiz-Point Approach to Interdependent Systems edited by
Herman Wold. Presentation of the program LVPLS 1.6 by J. B. Lohmoller.

Systems under Indirect Observation: Causality, Structure, Prediction, vols 1 and II
edited by Karl Joreskog and Herman Wold.

Publication of A Second Generation of Multivariate Analysis, Vols I and 11, edited by
Claes Fornell.

First application of PLS-PM in marketing with a paper published in Journal of Market-
ing Research: Two Structural FEquation Models: LISREL and PLS Applied to Consumer
Exit-Voice Theory by Claes Fornell and Fred Bookstein.

Partial Least Squares in Encyclopedia of Statistical Sciences by Herman Wold.
Lohmoller’s book: Latent Variable Path Modeling with Partial Least Squares.

1990s

1992

1993

1994
1995

1998

1999

Death of Herman Wold, 16 February.

Publication of A Primer for Soft Modeling by R. F. Falk and N. B. Miller.

Designing of the Swedish Customer Satisfaction Barometer and foundation of what
would become Claes Fornell International (CFI) Group.

Wynne W. Chin presents his PLS-Graph software, the first PLS-PM software with a
Graphical User Interface for drawing path diagrams.

Article Partial Least Squares by Claes Fornell and Jaesung Cha.

Publication of The Partial Least Squares (PLS) Approach to Causal Modeling: Personal
Computer Adoption and Use as an Illustration by Barclay, Thompson, and Higgins.

Publication of the book La Régression PLS: Théorie et Pratique by Michel Tenenhaus.
Publication of The Partial Least Squares Approach to Structural Equation Modeling by
Wynne W. Chin.

First International Symposium on PLS and Related Methods, Paris, France.
Structural Equation Modeling Analysis With Small Samples Using Partial Least Squares
by Wynne W. Chin and Peter R. Newsted.

2000s

2001 Second International Symposium on PLS and Related Methods, Anacapri, Italy.
2003 Third International Symposium on PLS and Related Methods, Lisbon, Portugal.

2005 Fourth International Symposium on PLS and Related Methods, Barcelona, Spain.

221

2007

2009
2010

2012

First Workshop, HEC and ESSEC, Paris, France.
Fifth International Symposium on PLS and Related Methods, Aas, Norway.

Sixth International Symposium on PLS and Related Methods, Beijing, China.

Publication of the Handbook of Partial Least Squares. Concepts, Methods and Appli-
cations edited by Esposito Vinzi, Wynne Chin, Jorg Henseler, and Huiwen Wang.

Seventh International Symposium on PLS and Related Methods, Houston, USA.

Reading List

Hermand Wold by Herman Wold (1982). As part of a series of autobiographies in
the book The Making of Statisticians, Wold tells his memories and tales. The most
complete biographical text of Wold.

Notes on the History and Nature of Partial Least Squares (PLS) Modelling by
Paul Geladi (1988). Besides the autobiographical text of Herman Wold, this paper by
Paul Geladi in the Journal fo Chemometrics narrates the main events and happenings
that gave rise to Partial Least Squares.

Obituary: Professor Herman Wold by Peter Whittle (1992). Written by one of
Wold’s former PhD students, Peter Whittle provides a short but rich biography of Her-
man Wold. With touching memories from his friendship with Herman Wold, Whittle
describes a concise picture of all the stuff Wold did and achieved in his life.

Obituary: Herman Wold, the father of PLS by Paul Geladi (1992). Short obituray
of Herman Wold in the journal .

The ET Interview: Professor H.O.A. Wold 1908 - 1992 by David F. Hendry and
Mary S. Morgan (1994). In this paper, economic historians David Hendry and Mary
Morgan publish the content of a couple of interviews with Herman Wold. This is a
must read document to understand the econometrician facet of Wold and his work and
contributions to econometrics.

The History of Econometric Ideas by Mary S. Morgan (1990). Directly related with
The ET Interview, this is one of the best books that talks about the history of econo-
metrics, and one of the few texts that helps understand the role Wold played in the
development of econometrics. Although the book doesn’t contain notes about PLS, it
does help to understand the tasks that Wold was working on and the problems he was
trying to solve, which eventually led to the development of PLS.

222

e Chemometrics and Intelligent Laboratory Systems 58 Special edition of the famous
chemometrics journal, this issue is dedicated to PLS methods. The forewords by Tor-
mod Naes and Michel Tenenhaus, as well as the personal memories of Svante Wold
and Harald Martens, provide an interesting perspective on the historical development
of PLS methods.

	Preface
	Introduction
	PLS Path Modeling
	R package plspm
	Why R?

	About Partial Least Squares
	Short tale of PLS
	Regressionists and Path-modelists

	Structure of the book
	R and plspm
	Installing plspm
	Some Extra Details

	Reading List

	Getting Started with PLS-PM
	Case Study: Index of Success
	Of latent and manifest variables
	Measuring Success, Attack and Defense
	Path Model
	Inner and Outer models

	Applying PLS-PM with the R package plspm
	Preparing the ingredients for plspm()
	Running plspm()
	Plotting results

	Reading List

	Setting the PLS-PM Framework
	PLS-PM Frame of Mind
	PLS Path Modeling Specs
	Formal Model: What we want
	The Structural Model
	The Measurement Model
	The Weight Relations

	Operative Model: How to get what we want
	Stage 1: Iterative Process
	Stage 2: Path Coefficients
	Stage 3: Loadings
	Wrapping up

	Reading List

	Interpreting PLS-PM Results
	Reminder of Our Success Index Model
	PLS-PM with plspm
	The function plspm()

	Handling PLS-PM results
	Measurement Model Assessment: Reflective Indicators
	All for one and one for all
	Unidimensionality of indicators
	Loadings and Communalities
	Cross-loadings

	Measurement Model Assessment: Formative Indicators
	Structural Model Assessment
	Coefficients of determination R2
	Redundancy
	GoF

	Validation
	Bootstrapping

	Reading List

	Running a PLS-PM Analysis
	Modeling Customer Satisfaction
	ECSI Model
	Case Study: Satisfaction in Education

	Preliminary Exploration
	Looking at the data
	Seeing the forest, not just the trees

	PLS-PM Round 1
	PLS-PM Round 2
	PLS-PM Round 3
	Checking unidimensionality
	Loadings and Communalities
	Path Coefficients
	Structural Regressions
	Effects
	Inner Model Summary
	GoF
	Bootstrap Validation
	Inspecting scores of latent variables

	Guidelines for a PLS-PM analysis
	Reading List

	Comparing Groups
	The million dollar question
	Group Comparison Approaches
	Bootstrap t-test
	Permutation Procedure
	Case Study: College GPA
	PLS-PM Analysis: GPA Model
	Female and Male Student Models

	Comparing Groups: Bootstrap t-test
	Comparing Groups: Permutation test
	Reading List

	Moderating Effects
	Moderator Variables
	Moderating effects in PLS-PM
	Moderator variables as constructs
	Case Study: Simplified Customer Satisfaction

	Product Indicator Approach
	Example

	Two-Stage Path Modeling Approach
	Example

	Two-Stage Regression Approach
	Example

	Categorical Variable Approach
	Example

	Reading List

	PLS Path Models with Higher-Order Constructs
	Constructify-it: How to model higher-order constructs?
	Two types of higher-order constructs
	Modeling higher-order constructs in PLS-PM
	Case Study: NFL data

	Repeated Indicators: The Poor Man's Approach
	Repeated Indicators example

	Two-Step Option: The Patch Approach
	Two-Step example

	Hybrid Option: The Give Away Approach
	Hybrid Approach example

	Wrapping Up
	Reading List

	Detecting Classes with REBUS-PLS
	Diversity in Data
	Unobserved Classes

	What is REBUS?
	The REBUS Approach
	Case Study: Success Index Model
	Global PLS Path Model

	Applying REBUS
	Local Models
	Quality of REBUS models
	Final Comments

	Reading List

	Historical Overview of PLS-PM
	Preliminaries
	Herman Wold
	The Econometrician
	The Least Squares Affair
	The Philosopher of Science

	Pre-PLS Era
	Soft Modeling
	PLS-PM Related Timeline
	Reading List

