

Improving Optimal Triangulation of Saddle Surfaces
 Computational Geometric Learning supported by FET-Open grant

D. Atariah G. Rote M. Wintraecken

Freie Universität Berlin
CGL Workshop, 1.10.2013

- Using Taylor expansion every smooth surface is, locally, approximated by a quadratic patch
- Using Euclidean motions, the quadratic patches can be transformed to graphs of bi-variate polynomials
- So, lets approximate quadratic graphs!

$$
\{(x, y, z): z=F(x, y)\}
$$

Introduction

Interpolating Approximation

Non-interpolating Approximation

Vertical Distance

- We are interested, w.l.o.g, in a neighborhood of the origin
- In this case the normal points upwards, and the following can approximate the Hausdorff distance

Definition (Vertical Distance)

Given two domains $D_{1}, D_{2} \subset \mathbb{R}^{2}$ and two graphs $f: D_{1} \rightarrow \mathbb{R}$ and $g: D_{2} \rightarrow \mathbb{R}$ then the vertical distance is

$$
\operatorname{dist}_{V}(f, g)=\max _{(x, y) \in D_{1} \cap D_{2}}|f(x, y)-g(x, y)| .
$$

Some Properties of V-Dist

Lemma

Let $A, B \subset \mathbb{R}^{3}$ be two sets such that their projection to the plane is identical. Then the following holds

$$
\operatorname{dist}_{H}(A, B) \leq \operatorname{dist}_{V}(A, B)
$$

Some Properties of V-Dist (cont.)

Lemma (Every two points are the same)

For every point $p \in S$, there exists an affine transformation $\mathcal{T}_{p}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which satisfies the following:

- $\mathcal{T}_{p}(p)=\overrightarrow{0}$
- $\mathcal{T}_{p}(S)=\tilde{S}$ which is a quadratic graph given by a polynomial of the form $\tilde{F}(x, y)=a_{1} x^{2}+2 a_{2} x y+a_{3} y^{2}$
- $\forall q, r \in \mathbb{R}^{3}$ which lie on a vertical line we have

$$
|q-r|=\left|\mathcal{T}_{p}(q)-\mathcal{T}_{p}(r)\right|
$$

Some Properties of V-Dist (cont.)

Lemma

Given two points p, q on a quadratic graph S then

$$
\operatorname{dist}_{V}\left(\ell_{p q}, S\right)=\frac{1}{4}\left|\tilde{F}\left(p_{x}-q_{x}, p_{y}-q_{y}\right)\right|
$$

where:

- $\ell_{p q}$ is the line segment connecting p and q
- $\tilde{F}(x, y)$ is the bi-variate polynomial
- V-dist is attained at the midpoint

Getting Started

For the sake of simplicity, from now on $S=\{(x, y, z): z=x y\}$

Goal

Find a triangle T with vertices $p_{0}, p_{1}, p_{2} \in S$ of maximal area such that
$\operatorname{dist}_{V}(T, S) \leq \epsilon$
for some $\epsilon>0$.

Optimize the Area of Planar Triangles

Optimize the Shape of Planar Triangles

Once optimizing the shape of the triangles of maximal area we obtain the following:

Optimize the Shape of Planar Triangles

Once optimizing the shape of the triangles of maximal area we obtain the following:

Triangulate the Saddle

Project the planar triangulation to the surface

Can We Do Better?

What do we have?

Given an $\epsilon>0$ and a saddle surface S, we can find a family \mathcal{T} of triangles which interpolate the surface and

- have maximal area,
- optimal shape and
- maintain $\operatorname{dist}_{V}(S, T)=\epsilon$ for all $T \in \mathcal{T}$.

Can We Do Better?

What do we have?

Given an $\epsilon>0$ and a saddle surface S, we can find a family \mathcal{T} of triangles which interpolate the surface and

- have maximal area,
- optimal shape and
- maintain $\operatorname{dist}_{v}(S, T)=\epsilon$ for all $T \in \mathcal{T}$.

Question. . .

Can this be improved by allowing non-interpolating triangles?

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

- Obtain one parameter family of area preserving triangles

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \epsilon$.

- Obtain one parameter family of area preserving triangles
- How should they be lifted?

Vertical Perturbed Projection

- Find vertical lifting $P_{i}(\xi, \eta)$ of $p_{i}(\xi, \eta)$ such that $\operatorname{dist}_{V}(S, \Delta P(\xi, \eta))$ will be minimized

Vertical Perturbed Projection

- Find vertical lifting $P_{i}(\xi, \eta)$ of $p_{i}(\xi, \eta)$ such that

$$
\operatorname{dist}_{V}(S, \Delta P(\xi, \eta))
$$

will be minimized

- Let $\Delta P_{\alpha}(\xi, \eta)$ be the projected triangle with vertices on

$$
S_{\alpha}=\{(x, y, z): z=x y+\alpha\}
$$

Vertical Perturbed Projection

- Find vertical lifting $P_{i}(\xi, \eta)$ of $p_{i}(\xi, \eta)$ such that

$$
\operatorname{dist}_{V}(S, \Delta P(\xi, \eta))
$$

will be minimized

- Let $\Delta P_{\alpha}(\xi, \eta)$ be the projected triangle with vertices on

$$
S_{\alpha}=\{(x, y, z): z=x y+\alpha\}
$$

- Vertical distance is attained at midpoints

Vertical Perturbed Projection (Cont.)

- Vertical distances from edges to S are

$$
\begin{aligned}
& \frac{\xi \eta}{4}+\alpha>0 \\
& \frac{1}{4}(\xi-\eta)^{2}-\alpha>0
\end{aligned}
$$

and has to be the same

Vertical Perturbed Projection (Cont.)

- Vertical distances from edges to S are

$$
\begin{aligned}
& \frac{\xi \eta}{4}+\alpha>0 \\
& \frac{1}{4}(\xi-\eta)^{2}-\alpha>0
\end{aligned}
$$

and has to be the same

- Therefore

$$
\alpha=\frac{1}{8}\left(\xi^{2}-3 \xi \eta+\eta^{2}\right)
$$

Vertical Perturbed Projection (Cont.)

- The vertical distance is
$\operatorname{dist}_{V}\left(S, \Delta P_{\alpha}(\xi)\right)=\left|\frac{1}{8}\left(\xi^{2}-\xi \eta+\eta^{2}\right)\right|$
and its minimum can be found

Vertical Perturbed Projection (Cont.)

- The vertical distance is
$\operatorname{dist}_{V}\left(S, \Delta P_{\alpha}(\xi)\right)=\left|\frac{1}{8}\left(\xi^{2}-\xi \eta+\eta^{2}\right)\right|$
and its minimum can be found
- Min is attained for

$$
\xi_{0}=\sqrt{2 \sqrt{5} \epsilon \frac{2+\sqrt{3}}{\sqrt{3}}}
$$

Vertical Perturbed Projection (Cont.)

- The vertical distance is
$\operatorname{dist}_{V}\left(S, \Delta P_{\alpha}(\xi)\right)=\left|\frac{1}{8}\left(\xi^{2}-\xi \eta+\eta^{2}\right)\right|$
and its minimum can be found
- Min is attained for

$$
\xi_{0}=\sqrt{2 \sqrt{5} \epsilon \frac{2+\sqrt{3}}{\sqrt{3}}}
$$

- And in this case

$$
\operatorname{dist}_{V}\left(S, \Delta P_{\alpha}\left(\xi_{0}\right)\right)=\frac{\sqrt{15}}{4} \epsilon \approx 0.968246 \epsilon
$$

Picture in Space

We can finally plot a non-interpolating optimal triangle which approximates a saddle surface

The Planar Super-Optimal Triangle

- Note the tangency property

The Planar Super-Optimal Triangle

- Note the tangency property
- Super-optimal triangle is equilatera!!

The Planar Super-Optimal Triangle

- Note the tangency property
- Super-optimal triangle is equilateral!
- Recall they are projected to an offset of S

The Planar Super-Optimal Triangle

- Note the tangency property
- Super-optimal triangle is equilateral!
- Recall they are projected to an offset of S

Thank you for your attention!

